FullStack Bench:字节豆包联合M-A-P社区开源的全新代码评估基准

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: FullStack Bench是由字节跳动豆包大模型团队与M-A-P社区联合推出的全新代码评估基准,专注于全栈编程和多语言编程能力评估。该基准覆盖超过11种真实编程场景,包含3374个问题,涉及16种编程语言,旨在更有效地衡量大模型在现实世界中的代码开发能力。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 全面评估:FullStack Bench能评估大型语言模型在多种真实编程场景下的能力,包括基础编程、数据科学、机器学习等多个领域。
  2. 多语言支持:覆盖16种广泛使用的编程语言,让评估结果更具普遍性和实用性。
  3. 实际应用场景模拟:基于从Stack Overflow等社区抽取问题,模拟真实世界编程问题,确保评估的相关性和实际应用价值。

正文(附运行示例)

FullStack Bench 是什么

公众号: 蚝油菜花 - FullStackBench

FullStack Bench是由字节跳动豆包大模型团队与M-A-P社区联合推出的全新代码评估基准,专注于全栈编程和多语言编程能力评估。该基准覆盖超过11种真实编程场景,包含3374个问题,涉及16种编程语言,旨在更有效地衡量大模型在现实世界中的代码开发能力。

FullStack Bench基于模拟真实编程应用领域,提供一个全面、多领域的评估平台,有助于推动代码智能技术的进步。

FullStack Bench 的主要功能

  • 全面评估:能评估大型语言模型(LLMs)在多种真实编程场景下的能力,包括基础编程、数据科学、机器学习等多个领域。
  • 多语言支持:覆盖16种广泛使用的编程语言,让评估结果更具普遍性和实用性。
  • 实际应用场景模拟:基于从Stack Overflow等社区抽取问题,模拟真实世界编程问题,确保评估的相关性和实际应用价值。
  • 代码质量控制:每个问题都包括题目描述、参考解决方案和单元测试用例,确保评估的准确性和可靠性。

FullStack Bench 的技术原理

  • 数据集构建:分析Stack Overflow等技术社区的问题分布,提炼出常见的真实编程应用领域,构建包含多个问题的数据集。
  • 人工注释与验证:基于人工注释和验证流程,确保每个问题的质量,包括问题描述的准确性和参考解决方案的正确性。
  • 单元测试用例:为每个问题设计单元测试用例,用自动化的方式验证模型生成的代码是否符合预期。
  • 多语言编程能力评估:基于设计真实世界的指令和相应的单元测试用例,评估模型在不同编程语言下的表现。
  • 沙盒执行环境:用SandboxFusion沙盒执行工具,支持多种编程语言和包,为代码执行提供安全和隔离的环境。

如何运行 FullStack Bench

首先,启动沙盒服务器:

docker run -d --rm -p 8080:8080 volcengine/sandbox-fusion:server-20241204

对于中国大陆用户,可以使用以下镜像:

docker run -d --rm -p 8080:8080 vemlp-cn-beijing.cr.volces.com/preset-images/code-sandbox:server-20241204

然后,运行基准测试:

git clone https://github.com/bytedance/FullStackBench.git
cd FullStackBench
pip install -r requirements.txt
# 修改src/main.py中的模型配置
python src/main.py

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
文字识别 并行计算 语音技术
ModelScope问题之下载模型文件报错如何解决
ModelScope模型报错是指在使用ModelScope平台进行模型训练或部署时遇到的错误和问题;本合集将收集ModelScope模型报错的常见情况和排查方法,帮助用户快速定位问题并采取有效措施。
3224 3
|
10月前
|
机器学习/深度学习 算法 计算机视觉
《深度学习案例实战》新书出版——基于阿里魔搭平台
《深度学习案例实战》是一本实用的指南,涵盖多个领域的深度学习应用案例。本书旨在通过具体的案例讲解,阐述典型深度学习算法在图像分类、声音识别、语义分割、目标检测等各个领域的广泛应用。本书所涵盖的典型案例包括太阳黑子分类、气象预测、食物声音分类、智能厨房、智能冰箱食材检测、集体照人脸识别、遛狗绳识别、智能售药机药品检测、道路裂纹检测、学生教室行为检测等。这些案例旨在通过实际问题的解决,使读者能够深入理解深度学习算法的应用和实践。 本书特别关注两个关键技术:低代码开发平台摩搭ModelScope和深度学习加速器OpenVINO。摩搭平台为读者提供了一个便捷的开发环境,借助其丰富的预训练模型库和开发平
359 2
《深度学习案例实战》新书出版——基于阿里魔搭平台
|
10月前
|
人工智能 关系型数据库 数据库
Perplexideez:开源本地 AI 搜索助手,智能搜索信息来源追溯
Perplexideez 是一款开源的本地 AI 搜索助手,旨在通过智能搜索和信息来源追溯功能,提升用户的搜索体验。它支持多用户、单点登录(SSO),并提供美观的搜索结果展示。Perplexideez 基于 Postgres 数据库,集成了 Ollama 或 OpenAI 兼容的端点,使用 SearXNG 实例进行网络搜索。
289 14
Perplexideez:开源本地 AI 搜索助手,智能搜索信息来源追溯
|
10月前
|
机器学习/深度学习 人工智能 测试技术
O1-CODER:北交大推出的O1代码版开源项目,专注于编码任务
O1-CODER是由北京交通大学研究团队推出的开源项目,专注于编码任务。该项目结合强化学习和蒙特卡洛树搜索技术,提升模型的System-2思维能力,旨在生成更高效、逻辑性更强的代码。
280 24
O1-CODER:北交大推出的O1代码版开源项目,专注于编码任务
|
10月前
|
机器学习/深度学习 人工智能 开发工具
Clone-voice:开源的声音克隆工具,支持文本转语音或改变声音风格,支持16种语言
Clone-voice是一款开源的声音克隆工具,支持16种语言,能够将文本转换为语音或将一种声音风格转换为另一种。该工具基于深度学习技术,界面友好,操作简单,适用于多种应用场景,如视频制作、语言学习和广告配音等。
1769 9
Clone-voice:开源的声音克隆工具,支持文本转语音或改变声音风格,支持16种语言
|
10月前
|
缓存 NoSQL 数据库
《如何优化数据库查询性能以应对高并发场景》
优化数据库查询性能需综合考虑:合理设计数据库(表结构、索引、关联),高效利用索引,缓存热点数据,采用合理的查询策略,优化数据库参数配置,实施读写分离及水平扩展。针对具体需求,选择合适的方法提升性能。
281 14
|
10月前
|
机器学习/深度学习 人工智能 搜索推荐
DeepSeek-V2.5-1210 在线开放使用!支持联网搜索,在各大领域的表现得到全面提升
DeepSeek-V2.5-1210 是 DeepSeek V2.5 系列的最终版微调模型,支持联网搜索功能,具备在数学、编程、写作和角色扮演等领域的能力提升。本文将详细介绍该模型的功能、技术原理及应用场景。
10249 19
DeepSeek-V2.5-1210 在线开放使用!支持联网搜索,在各大领域的表现得到全面提升
|
12月前
|
人工智能 Java API
阿里云开源 AI 应用开发框架:Spring AI Alibaba
近期,阿里云重磅发布了首款面向 Java 开发者的开源 AI 应用开发框架:Spring AI Alibaba(项目 Github 仓库地址:alibaba/spring-ai-alibaba),Spring AI Alibaba 项目基于 Spring AI 构建,是阿里云通义系列模型及服务在 Java AI 应用开发领域的最佳实践,提供高层次的 AI API 抽象与云原生基础设施集成方案,帮助开发者快速构建 AI 应用。本文将详细介绍 Spring AI Alibaba 的核心特性,并通过「智能机票助手」的示例直观的展示 Spring AI Alibaba 开发 AI 应用的便利性。示例源
8262 136
|
11月前
|
弹性计算 人工智能 自然语言处理
魔搭社区与函数计算:高效部署开源大模型的文本生成服务体验
在数字化时代,人工智能技术迅速发展,开源大模型成为重要成果。魔搭社区(ModelScope)作为开源大模型的聚集地,结合阿里云函数计算,提供了一种高效、便捷的部署方式。通过按需付费和弹性伸缩,开发者可以快速部署和使用大模型,享受云计算的便利。本文介绍了魔搭社区与函数计算的结合使用体验,包括环境准备、部署应用、体验使用和资源清理等步骤,并提出了改进建议。
|
10月前
|
自然语言处理 数据可视化 API
Qwen系列模型+GraphRAG/LightRAG/Kotaemon从0开始构建中医方剂大模型知识图谱问答
本文详细记录了作者在短时间内尝试构建中医药知识图谱的过程,涵盖了GraphRAG、LightRAG和Kotaemon三种图RAG架构的对比与应用。通过实际操作,作者不仅展示了如何利用这些工具构建知识图谱,还指出了每种工具的优势和局限性。尽管初步构建的知识图谱在数据处理、实体识别和关系抽取等方面存在不足,但为后续的优化和改进提供了宝贵的经验和方向。此外,文章强调了知识图谱构建不仅仅是技术问题,还需要深入整合领域知识和满足用户需求,体现了跨学科合作的重要性。

热门文章

最新文章