【AI系统】自动微分引言

简介: 本文聚焦AI框架中的自动微分功能,探讨其重要性及其实现方式。自动微分是AI框架的核心,支持正向和反向传播,确保模型的有效训练。文中介绍了微分的基本概念、自动微分的两种主要模式(前向和后向微分),以及其实现方法,包括表达式图、操作符重载和源码转换。此外,文章还展望了自动微分技术的未来发展与挑战,鼓励读者深入学习AI框架及其背后的原理。

内容介绍

这一篇幅里面主要是围绕 AI 框架、或者训练平台的自动微分功能。AI 框架中关于自动微分的一个重要性不言而喻,实际上自动微分是贯穿整个 AI 框架的全流程。没有了自动微分,也就没有了 AI 框架最核心的功能。为什么这么说呢?可以想象一下,假设在实现一个神经网络模型的时候,一般开发者只会使用 Pytorch 的 API 实现一个正向的网络表达式,可是网络模型的反向怎么表示呢?

实际上除了正向的表示是用户手工的地去构建,反向的表示、自动微分的实现、正反向的链接关系都是由 AI 框架,里面的自动微分功能去实现的。因此说自动微分这个功能在 AI 框架里面是非常的重要。

在接下来的内容,主要是了解计算机实现微分的基本概念,其实微分的实现方式分为很多种,有数字微分,符号微分,自动微分。函数的微分是指对函数的局部变化的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。

微分在数学中的定义:由 $y \quad$ 是 $x\quad$ 的函数 $(y=f(x))\quad\quad\quad\quad$。从简单的 $x-y\quad\quad$ 座标系来看,自变数 $x\quad$ 有微小的变化量时 $(d/dx)\quad\quad\quad$,应变数 $y\quad$ 也会跟着变动,但 $x\quad$ 跟 $y\quad$ 的变化量都是极小的。当 $x\quad$ 有极小的变化量时,我们称对 $x\quad$ 微分。微分主要用于线性函数的改变量,这是微积分的基本概念之一。

在具体实现自动微分的过程中,主要有 2 种实现模式,前向和向后微分。前向微分和后向微分为了在数学上方便表达,会引入一个亚克比原理,或者叫做亚克比矩阵。

对微分进行表示,不过这仅限于数学表示,实际上实现的过程中更多的是通过以下三种方法实现:

1)表达式或者图的方式;2)操作符重载(object-oriented);3)源码转换 AST。

最后来去畅想自动微分的未来和挑战,来去回答我们到底要不要学一个 AI 框架呢?学模型算法和原理才是核心?AI 框架未来的核心点机制将会如何演进?

如果您想了解更多AI知识,与AI专业人士交流,请立即访问昇腾社区官方网站https://www.hiascend.com/或者深入研读《AI系统:原理与架构》一书,这里汇聚了海量的AI学习资源和实践课程,为您的AI技术成长提供强劲动力。不仅如此,您还有机会投身于全国昇腾AI创新大赛和昇腾AI开发者创享日等盛事,发现AI世界的无限奥秘~

目录
相关文章
|
3天前
|
人工智能 前端开发 小程序
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
|
8天前
|
人工智能 自然语言处理 并行计算
ASAL:Sakana AI 联合 OpenAI 推出自动探索人工生命的系统,通过计算机模拟生命进化的过程
ASAL 是由 Sakana AI 联合 OpenAI 等机构推出的自动化搜索人工生命系统,基于基础模型实现多种搜索机制,扩展了人工生命研究的边界。
59 1
ASAL:Sakana AI 联合 OpenAI 推出自动探索人工生命的系统,通过计算机模拟生命进化的过程
|
11天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在电子商务中的个性化推荐系统:驱动用户体验升级
AI在电子商务中的个性化推荐系统:驱动用户体验升级
74 17
|
11天前
|
人工智能 安全 机器人
OpenAI重拾规则系统,用AI版机器人定律守护大模型安全
在人工智能领域,大语言模型(LLM)展现出强大的语言理解和生成能力,但也带来了安全性和可靠性挑战。OpenAI研究人员提出“规则基于奖励(RBR)”方法,通过明确规则引导LLM行为,确保其符合人类价值观和道德准则。实验显示,RBR方法在安全性与有用性之间取得了良好平衡,F1分数达97.1。然而,规则制定和维护复杂,且难以完全捕捉语言的多样性。论文:https://arxiv.org/pdf/2411.01111。
53 13
|
19小时前
|
存储 人工智能 开发框架
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
Eliza 是一个开源的多代理模拟框架,支持多平台连接、多模型集成,能够快速构建智能、高效的AI系统。
24 8
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
|
14天前
|
机器学习/深度学习 传感器 人工智能
AI视频监控系统在养老院中的技术实现
AI视频监控系统在养老院的应用,结合了计算机视觉、深度学习和传感器融合技术,实现了对老人体征、摔倒和异常行为的实时监控与分析。系统通过高清摄像头和算法模型,能够准确识别老人的动作和健康状况,并及时向护理人员发出警报,提高护理质量和安全性。
84 14
|
7天前
|
机器学习/深度学习 传感器 人工智能
开源AI视频监控系统在监狱安全中的应用——实时情绪与行为分析、暴力预警技术详解
针对监狱环境中囚犯情绪波动和复杂人际互动带来的监控挑战,传统CCTV系统难以有效预警暴力事件。AI视频监控系统基于深度学习与计算机视觉技术,实现对行为、情绪的实时分析,尤其在低光环境下表现优异。该系统通过多设备协同、数据同步及自适应训练,确保高精度识别(95%以上)、快速响应(<5秒),并具备24小时不间断运行能力,极大提升了监狱安全管理的效率与准确性。
|
11天前
|
机器学习/深度学习 存储 人工智能
基于AI的实时监控系统:技术架构与挑战分析
AI视频监控系统利用计算机视觉和深度学习技术,实现实时分析与智能识别,显著提升高风险场所如监狱的安全性。系统架构包括数据采集、预处理、行为分析、实时决策及数据存储层,涵盖高分辨率视频传输、图像增强、目标检测、异常行为识别等关键技术。面对算法优化、实时性和系统集成等挑战,通过数据增强、边缘计算和模块化设计等方法解决。未来,AI技术的进步将进一步提高监控系统的智能化水平和应对复杂安全挑战的能力。
|
15天前
|
机器学习/深度学习 人工智能 算法
【AI系统】AI 框架之争
本文介绍了AI框架在数学上对自动微分的表达和处理,以及其在多线程算子加速、GPU/NPU支持、代码编译优化等方面的技术挑战。文章详细梳理了AI框架的发展历程,从萌芽阶段到深化阶段,探讨了不同阶段的关键技术和代表性框架。同时,文章展望了AI框架的未来趋势,包括全场景支持、易用性提升、大规模分布式支持和科学计算融合。
39 0
|
15天前
|
缓存 人工智能 负载均衡
AI革新迭代:如何利用代理IP提升智能系统性能
在人工智能快速发展的背景下,智能系统的性能优化至关重要。本文详细介绍了如何利用代理IP提升智能系统性能,涵盖数据加速与缓存、负载均衡、突破地域限制、数据传输优化和网络安全防护等方面。结合具体案例和代码,展示了代理IP在实际应用中的价值和优势。
33 0