【AI系统】自动微分引言

简介: 本文聚焦AI框架中的自动微分功能,探讨其重要性及其实现方式。自动微分是AI框架的核心,支持正向和反向传播,确保模型的有效训练。文中介绍了微分的基本概念、自动微分的两种主要模式(前向和后向微分),以及其实现方法,包括表达式图、操作符重载和源码转换。此外,文章还展望了自动微分技术的未来发展与挑战,鼓励读者深入学习AI框架及其背后的原理。

内容介绍

这一篇幅里面主要是围绕 AI 框架、或者训练平台的自动微分功能。AI 框架中关于自动微分的一个重要性不言而喻,实际上自动微分是贯穿整个 AI 框架的全流程。没有了自动微分,也就没有了 AI 框架最核心的功能。为什么这么说呢?可以想象一下,假设在实现一个神经网络模型的时候,一般开发者只会使用 Pytorch 的 API 实现一个正向的网络表达式,可是网络模型的反向怎么表示呢?

实际上除了正向的表示是用户手工的地去构建,反向的表示、自动微分的实现、正反向的链接关系都是由 AI 框架,里面的自动微分功能去实现的。因此说自动微分这个功能在 AI 框架里面是非常的重要。

在接下来的内容,主要是了解计算机实现微分的基本概念,其实微分的实现方式分为很多种,有数字微分,符号微分,自动微分。函数的微分是指对函数的局部变化的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。

微分在数学中的定义:由 yx 的函数 (y=f(x))。从简单的 xy 座标系来看,自变数 x 有微小的变化量时 (d/dx),应变数 y 也会跟着变动,但 xy 的变化量都是极小的。当 x 有极小的变化量时,我们称对 x 微分。微分主要用于线性函数的改变量,这是微积分的基本概念之一。

在具体实现自动微分的过程中,主要有 2 种实现模式,前向和向后微分。前向微分和后向微分为了在数学上方便表达,会引入一个亚克比原理,或者叫做亚克比矩阵。

对微分进行表示,不过这仅限于数学表示,实际上实现的过程中更多的是通过以下三种方法实现:

1)表达式或者图的方式;2)操作符重载(object-oriented);3)源码转换 AST。

最后来去畅想自动微分的未来和挑战,来去回答我们到底要不要学一个 AI 框架呢?学模型算法和原理才是核心?AI 框架未来的核心点机制将会如何演进?

如果您想了解更多AI知识,与AI专业人士交流,请立即访问昇腾社区官方网站https://www.hiascend.com/或者深入研读《AI系统:原理与架构》一书,这里汇聚了海量的AI学习资源和实践课程,为您的AI技术成长提供强劲动力。不仅如此,您还有机会投身于全国昇腾AI创新大赛和昇腾AI开发者创享日等盛事,发现AI世界的无限奥秘~

目录
打赏
0
2
2
0
144
分享
相关文章
使用AI进行系统调优:给系统装上“智能大脑”
使用AI进行系统调优:给系统装上“智能大脑”
59 10
“AI医生”入驻运维现场:聊聊系统健康检查的新姿势
“AI医生”入驻运维现场:聊聊系统健康检查的新姿势
137 78
Dify-Plus:企业级AI管理核弹!开源方案吊打SaaS,额度+密钥+鉴权系统全面集成
Dify-Plus 是基于 Dify 二次开发的企业级增强版项目,新增用户额度、密钥管理、Web 登录鉴权等功能,优化权限管理,适合企业场景使用。
161 3
Dify-Plus:企业级AI管理核弹!开源方案吊打SaaS,额度+密钥+鉴权系统全面集成
Agent TARS:一键让AI托管电脑!字节开源PC端多模态AI助手,无缝集成浏览器与系统操作
Agent TARS 是一款开源的多模态AI助手,能够通过视觉解析网页并无缝集成命令行和文件系统,帮助用户高效完成复杂任务。
2197 3
Agent TARS:一键让AI托管电脑!字节开源PC端多模态AI助手,无缝集成浏览器与系统操作
对话即服务:Spring Boot整合MCP让你的CRUD系统秒变AI助手
本文介绍了如何通过Model Context Protocol (MCP) 协议将传统Spring Boot服务改造为支持AI交互的智能系统。MCP作为“万能适配器”,让AI以统一方式与多种服务和数据源交互,降低开发复杂度。文章以图书管理服务为例,详细说明了引入依赖、配置MCP服务器、改造服务方法(注解方式或函数Bean方式)及接口测试的全流程。最终实现用户通过自然语言查询数据库的功能,展示了MCP在简化AI集成、提升系统易用性方面的价值。未来,“对话即服务”有望成为主流开发范式。
572 3
AI技术如何重塑客服系统?解析合力亿捷AI智能客服系统实践案例
本文探讨了人工智能技术在客服系统中的应用,涵盖技术架构、关键技术和优化策略。通过感知层、认知层、决策层和执行层的协同工作,结合自然语言处理、知识库构建和多模态交互技术,合力亿捷客服系统实现了智能化服务。文章还提出了用户体验优化、服务质量提升和系统性能改进的方法,并展望了未来发展方向,强调其在客户服务领域的核心价值与潜力。
51 6
凌晨急诊室诞生的疫苗系统:一个宝妈的AI破局之路
本文分享了一位妈妈在急诊室经历后,将技术与母爱结合的心路历程。从凌晨抱着高烧儿子就医,同时处理工作告警的崩溃时刻,到意识到妈妈和程序员都是“运维工程师”,作者逐步构建了宝宝疫苗管理系统。文章介绍了系统从静态命令行工具升级为动态智能预警系统的全过程,包括环境搭建、核心代码解析及家庭协同功能实现,并总结了碎片时间开发法与防坑指南。最终,作者通过技术赋予母爱温度,为其他妈妈提供了实用资源包,展现了代码背后的人文关怀。
64 5
【最佳实践系列】AI程序员让我变成全栈:基于阿里云百炼DeepSeek的跨语言公告系统实战
本文介绍了如何在Java开发中通过跨语言编程,利用阿里云百炼服务平台的DeepSeek大模型生成公告内容,并将其嵌入前端页面。
算法系统协同优化,vivo与港中文推出BlueLM-V-3B,手机秒变多模态AI专家
BlueLM-V-3B是由vivo与香港中文大学共同研发的多模态大型语言模型,专为移动设备优化。它通过算法和系统协同优化,实现了高效部署和快速生成速度(24.4 token/s),并在OpenCompass基准测试中取得优异成绩(66.1分)。模型小巧,语言部分含27亿参数,视觉编码器含4000万参数,适合移动设备使用。尽管如此,低端设备可能仍面临资源压力,实际应用效果需进一步验证。论文链接:https://arxiv.org/abs/2411.10640。
43 9

热门文章

最新文章