【AI系统】AI 框架基础介绍

简介: 本文介绍了AI算法、神经网络及AI框架的基础概念,探讨了神经网络的作用、训练目的以及AI框架如何简化模型设计、训练与验证过程。文章还概述了AI框架的发展历程和技术演进,强调了国内外主要AI框架的特点及其对AI技术发展的推动作用。

什么是 AI 算法?什么是神经网络?神经网络有什么用?为什么神经网络需要训练?什么是模型?AI 框架有什么用?AI 框架能解决什么问题?

上面的几个问题其实还挺有挑战的,也是本文需要回答的一个问题。下面来对一些基础概念进程澄清:首先深度学习是机器学习研究领域中的一种范式,而深度学习的概念源于对人工神经网络的研究,很多深度学习算法都使用神经网络进行表示,因为神经网络的性能精度和通用效果都非常好,于是业界习惯性地把深度学习算法等同于 AI。

image

AI 框架基础介绍

在 AI 框架基础系列里面,将会先介绍神经网络和深度学习的基本概念,了解深度学习、神经网络、 AI 多个新名词和新概念之间的种种关联关系。简单而言,而深度学习是通过函数逼近来解析神经网络的数学原理,通过反向求导算法来求解神经网络中参数的偏导,从而迭代地求解神经网络中的最优值。不过上面的叙述还是有点难以理解复杂的数学原理,因此在 AI 框架作用中的深度学习基础,将会深入浅出地介绍介绍深度学习的基础。

有了深度学习的基础之后,就能够比较好地理解 AI 框架的实际作用,即作为 AI 算法(深度学习算法)的模型设计、训练和验证的一套标准接口、特性库和工具包,集成了算法的封装、数据的调用以及计算资源的使用,同时面向开发者提供了开发界面和高效的执行平台,是现阶段 AI 算法开发的必备工具。

有了对深度学习的认识、对 AI 框架作用的认识,自然就理解 AI 框架的目的和为什么目前国内厂商,无论是华为昇腾构建 MindSpore、百度打造飞桨 PaddlePaddle、之江实验室联合一流科技开发的 OneFlow,包括商汤、旷视都推出自己的自研 AI 框架了。

可是 AI 的框架发展并不顺利,从萌芽阶段(2000 年初期)、 成长阶段(2012~2014 年)、稳定阶段(2015 年~2019 年)、深化阶段(2020 年以后)。其发展脉络与 AI ,特别是神经网络技术的异峰突起有非常紧密的联系。中间又经历了三代框架,这里面提到的 AI 框架三代并不是以时间为维度,更多的是以技术为区分维度,通过不同的技术手段走过三代技术框架,从而使得 AI 框架慢慢走向成熟。

截至目前为止,国际主流的 AI 框架(PyTorch、TensorFlow 等)基本均已经实现动态图开发、静态图部署的编程范式,具备动静态图转换的能力,不过基于开发效率考虑,动态图与静态图的转换与统一需要持续迭代优化。

上面提到的编程范式主要是跟开发者的编程习惯和编程方式息息相关。实际上,编程范型、编程范式或程式设计法(Programming paradigm),是指软件工程中的一类典型的编程风格。

常见的编程范型有:函数式编程、指令式编程、过程式编程、面向对象编程等等。编程范型提供并决定了程序员对程序执行的看法,而 AI 框架的编程范式目前主要集中在声明式编程与命令式编程两种之间。

如果您想了解更多AI知识,与AI专业人士交流,请立即访问昇腾社区官方网站https://www.hiascend.com/或者深入研读《AI系统:原理与架构》一书,这里汇聚了海量的AI学习资源和实践课程,为您的AI技术成长提供强劲动力。不仅如此,您还有机会投身于全国昇腾AI创新大赛和昇腾AI开发者创享日等盛事,发现AI世界的无限奥秘~

目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
DiffSensei:AI 漫画生成框架,能生成内容可控的黑白漫画面板,支持多角色和布局控制
DiffSensei 是一个由北京大学、上海AI实验室及南洋理工大学共同推出的AI漫画生成框架,能够生成可控的黑白漫画面板。该框架整合了基于扩散的图像生成器和多模态大型语言模型(MLLM),支持多角色控制和精确布局控制,适用于漫画创作、个性化内容生成等多个领域。
44 17
DiffSensei:AI 漫画生成框架,能生成内容可控的黑白漫画面板,支持多角色和布局控制
|
4天前
|
人工智能 API 语音技术
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
TEN Agent 是一个开源的实时多模态 AI 代理框架,集成了 OpenAI Realtime API 和 RTC 技术,支持语音、文本和图像的多模态交互,具备实时通信、模块化设计和多语言支持等功能,适用于智能客服、实时语音助手等多种场景。
62 15
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
4天前
|
存储 人工智能 vr&ar
转载:【AI系统】CPU 基础
CPU,即中央处理器,是计算机的核心部件,负责执行指令和控制所有组件。本文从CPU的发展史入手,介绍了从ENIAC到现代CPU的演变,重点讲述了冯·诺依曼架构的形成及其对CPU设计的影响。文章还详细解析了CPU的基本构成,包括算术逻辑单元(ALU)、存储单元(MU)和控制单元(CU),以及它们如何协同工作完成指令的取指、解码、执行和写回过程。此外,文章探讨了CPU的局限性及并行处理架构的引入。
转载:【AI系统】CPU 基础
|
4天前
|
人工智能 缓存 并行计算
转载:【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,讲解了CPU算力的计算方法、算力与数据加载之间的平衡,以及如何通过算力敏感度分析优化计算系统性能。同时,文章还考察了服务器、GPU和超级计算机等平台的性能发展,揭示了这些变化如何塑造我们对CPU性能的理解和期待。
转载:【AI系统】CPU 计算本质
|
4天前
|
机器学习/深度学习 存储 人工智能
转载:【AI系统】计算之比特位宽
本文详细介绍了深度学习中模型量化操作及其重要性,重点探讨了比特位宽的概念,包括整数和浮点数的表示方法。文章还分析了不同数据类型(如FP32、FP16、BF16、FP8等)在AI模型中的应用,特别是FP8数据类型在提升计算性能和降低内存占用方面的优势。最后,文章讨论了降低比特位宽对AI芯片性能的影响,强调了在不同应用场景中选择合适数据类型的重要性。
转载:【AI系统】计算之比特位宽
|
4天前
|
机器学习/深度学习 人工智能 算法
转载:【AI系统】关键设计指标
本文介绍了AI芯片的关键设计指标及其与AI计算模式的关系,涵盖计算单位(如OPS、MACs、FLOPs)、关键性能指标(精度、吞吐量、时延、能耗、成本、易用性)及优化策略,通过算术强度和Roofline模型评估AI模型在芯片上的执行性能,旨在帮助理解AI芯片设计的核心考量与性能优化方法。
转载:【AI系统】关键设计指标
|
4天前
|
机器学习/深度学习 人工智能 并行计算
转载:【AI系统】AI轻量化与并行策略
本文探讨了AI计算模式对AI芯片设计的重要性,重点分析了轻量化网络模型和大模型分布式并行两大主题。轻量化网络模型通过减少模型参数量和计算量,实现在资源受限设备上的高效部署;大模型分布式并行则通过数据并行和模型并行技术,解决大模型训练中的算力和内存瓶颈,推动AI技术的进一步发展。
转载:【AI系统】AI轻量化与并行策略
|
1天前
|
人工智能 安全 算法
CAMEL AI 上海黑客松重磅来袭!快来尝试搭建你的第一个多智能体系统吧!
掌握多智能体系统,🐫 CAMEL-AI Workshop & 黑客马拉松即将启航!
|
5天前
|
机器学习/深度学习 人工智能 算法
转载:【AI系统】AI 发展驱动力
本文介绍了AI的起源与发展历程,强调了2016年AlphaGo胜利对AI关注度的提升。文中详细解析了AI技术在搜索引擎、图片检索、广告推荐等领域的应用,并阐述了机器学习、深度学习和神经网络之间的关系。文章还深入探讨了AI的学习方法,包括模型的输入输出确定、模型设计与开发、训练过程(前向传播、反向传播、梯度更新)及推理过程。最后,文章概述了AI算法的现状与发展趋势,以及AI系统出现的背景,包括大数据、算法进步和算力提升三大关键因素。
转载:【AI系统】AI 发展驱动力