【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别

简介: 宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬

一、介绍

宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬(American Bulldog)', '美国比特犬(American Pit Bull Terrier)', '巴赛特猎犬(Basset Hound)', '比格犬(Beagle)', '拳师犬(Boxer)', '吉娃娃(Chihuahua)', '英国可卡犬(English Cocker Spaniel)', '英国赛特犬(English Setter)', '德国短毛指示犬(German Shorthaired)', '大比利牛犬(Great Pyrenees)', '哈瓦那犬(Havanese)', '日本 chin(Japanese Chin)', '德国狐犬(Keeshond)', '莱昂贝格犬(Leonberger)', '迷你杜宾犬(Miniature Pinscher)', '纽芬兰犬(Newfoundland)', '博美犬(Pomeranian)', '哈巴狗(Pug)', '圣伯纳犬(Saint Bernard)', '萨摩耶犬(Samoyed)', '苏格兰梗犬(Scottish Terrier)', '柴犬(Shiba Inu)', '斯塔福郡斗牛犬(Staffordshire Bull Terrier)', '小麦梗(Wheaten Terrier)', '约克夏梗(Yorkshire Terrier)'】

再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张宠物图片识别其名称。

二、系统效果图片展示

img_12_05_20_54_49

img_12_05_20_55_00

img_12_05_20_55_10

三、完整代码 and 演示视频 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/blwx3d16qfusg8hg

四、系统关键技术~ResNet50算法

ResNet50(Residual Network 50)是一种深度卷积神经网络(CNN)模型,提出者为微软研究院的Kaiming He等人。它是ResNet系列模型的一部分,通过引入残差学习(Residual Learning)的思想,解决了深度神经网络在加深时训练变得困难的问题。ResNet50的"50"指的是该网络的层数,模型包含50个卷积层、池化层和全连接层。ResNet通过跳跃连接(Skip Connections)或残差连接(Residual Connections)将输入直接传递给后续层,避免了深层网络中梯度消失和梯度爆炸的问题,从而使得网络能够有效地训练更加深层次的结构。

ResNet50的特点:

  1. 残差块(Residual Blocks):ResNet通过引入跳跃连接,允许信号在某些层之间跳跃,直接传递。这些残差连接可以有效缓解网络层数加深后梯度消失的问题,确保训练过程中的梯度仍然能够有效传播。
  2. 更深的网络:与传统的CNN相比,ResNet50能够在较深的网络结构中训练并取得优异的性能,因为它通过跳跃连接解决了深度网络训练中的难题。
  3. 模块化设计:ResNet50由多个残差模块构成,每个模块包含两个或更多的卷积层,通过快捷连接将输入直接与输出相加。这种设计使得网络能够有效地捕捉到不同层次的特征信息。

ResNet50的结构:

ResNet50的网络结构由多个残差模块(Residual Blocks)堆叠而成,每个模块内部包含两个3x3的卷积层以及一个捷径连接。整个网络可以分为四个阶段(Stage),每个阶段的输出通道数逐渐增加,具体结构如下:

  • Stage 1:由一个卷积层和池化层组成。
  • Stage 2-4:每个阶段包含多个残差模块。
  • 最后,使用全局平均池化层(Global Average Pooling)将特征图缩减为一个向量,并通过一个全连接层输出最终的分类结果。

优势:

  • 训练深层次网络:通过引入残差学习,ResNet可以轻松训练非常深的网络,像ResNet50、ResNet101、ResNet152等都取得了极大的成功。
  • 避免了梯度消失:残差连接有助于保持信号的传播,使得梯度能够有效地从输出层传播回输入层,从而避免梯度消失问题。

下面是一个使用ResNet50模型进行图像分类的简单TensorFlow代码示例:

import tensorflow as tf
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import layers, models

# 加载ResNet50预训练模型(不包括顶部分类层)
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))

# 固定ResNet50的卷积层,不进行训练
base_model.trainable = False

# 构建自定义分类模型
model = models.Sequential([
    base_model,  # 使用预训练的ResNet50卷积层
    layers.GlobalAveragePooling2D(),  # 全局平均池化层
    layers.Dense(512, activation='relu'),  # 全连接层
    layers.Dense(10, activation='softmax')  # 输出10个类别的预测
])

# 编译模型
model.compile(optimizer=tf.keras.optimizers.Adam(), 
              loss='sparse_categorical_crossentropy', 
              metrics=['accuracy'])

# 数据预处理:加载训练和验证数据集
train_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
    'data/train',  # 训练数据路径
    target_size=(224, 224),
    batch_size=32,
    class_mode='sparse'
)

# 训练模型
model.fit(train_generator, epochs=10)

代码说明:

  1. ResNet50模型:通过ResNet50函数加载预训练的ResNet50模型,并去掉顶部的全连接层(include_top=False),因为我们会自定义一个新的分类器。
  2. 全局平均池化GlobalAveragePooling2D将特征图的空间维度压缩为单个数值,以减少参数量。
  3. 训练过程:使用Adam优化器、sparse_categorical_crossentropy损失函数进行训练,并在训练时加载图像数据集。

ResNet50能够有效利用预训练权重来提取图像特征,从而在各种图像分类任务中表现优异。

目录
相关文章
|
11天前
|
机器学习/深度学习 人工智能 测试技术
EdgeMark:嵌入式人工智能工具的自动化与基准测试系统——论文阅读
EdgeMark是一个面向嵌入式AI的自动化部署与基准测试系统,支持TensorFlow Lite Micro、Edge Impulse等主流工具,通过模块化架构实现模型生成、优化、转换与部署全流程自动化,并提供跨平台性能对比,助力开发者在资源受限设备上高效选择与部署AI模型。
130 9
EdgeMark:嵌入式人工智能工具的自动化与基准测试系统——论文阅读
|
6月前
|
人工智能 自然语言处理 API
MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
本文深入解析了人工智能领域的两项关键基础设施协议:模型上下文协议(MCP)与代理对代理协议(A2A)。MCP由Anthropic开发,专注于标准化AI模型与外部工具和数据源的连接,降低系统集成复杂度;A2A由Google发布,旨在实现不同AI代理间的跨平台协作。两者虽有相似之处,但在设计目标与应用场景上互为补充。文章通过具体示例分析了两种协议的技术差异及适用场景,并探讨了其在企业工作流自动化、医疗信息系统和软件工程中的应用。最后,文章强调了整合MCP与A2A构建协同AI系统架构的重要性,为未来AI技术生态系统的演进提供了方向。
859 62
|
6月前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
172 8
|
7月前
|
机器学习/深度学习 数据采集 算法
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
|
7月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
387 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
7月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
8月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
616 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
10月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
838 55
|
11月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
897 5
|
11月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
471 3

热门文章

最新文章

推荐镜像

更多