360Zhinao2-7B:360推出自研360智脑大模型的升级版

简介: 360Zhinao2-7B是360自研的AI大模型360智脑7B参数升级版,涵盖基础模型及多种上下文长度的聊天模型。该模型在语言理解与生成、聊天能力、数学逻辑推理等方面表现出色,支持多语言和多上下文长度,适用于多种商业应用场景。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 模型升级:360Zhinao2-7B是360智脑7B参数的升级版,采用全新的多阶段训练方式和更优质的数据处理策略。
  2. 功能强大:模型支持语言理解与生成、聊天能力、数学逻辑推理等多项功能,适用于多种商业场景。
  3. 技术领先:在国内外同尺寸开源模型中,360Zhinao2-7B在中文能力、IFEval指令遵循7B和复杂数学推理能力方面均排名第一。

正文(附运行示例)

360Zhinao2-7B是什么

公众号: 蚝油菜花 - 360zhinao2

360Zhinao2-7B是360自研的AI大模型360智脑7B参数升级版,涵盖基础模型及多种上下文长度的聊天模型。该模型是继360Zhinao1-7B之后的重要更新,基于采用全新的多阶段训练方式和更优质的数据处理策略,提升中英文通用能力,增强模型的数学逻辑推理能力。

在国内外同尺寸开源模型中,360Zhinao2-7B在中文能力、IFEval指令遵循7B和复杂数学推理能力方面均排名第一。模型的长文本微调能力在各个长文本benchmark上也位列第一梯队。

360Zhinao2-7B的主要功能

  • 语言理解与生成:能理解和生成中文和英文文本,适用于多种语言处理任务。
  • 聊天能力:提供强大的聊天功能,支持生成流畅、相关且准确的对话回复。
  • 多上下文长度支持:具有不同上下文长度的聊天模型,能处理从4K到360K不同长度的对话历史。
  • 数学逻辑推理:在数学问题解答和逻辑推理方面表现出色,能处理复杂的数学问题。
  • 多语言支持:除中文,模型也支持英文,能在不同语言的数据集上进行训练和推理。
  • 商业应用:支持免费商用,适用于教育、医疗、智能客服等多个商业场景。

360Zhinao2-7B的技术原理

  • 大规模预训练:采用两阶段训练方法,首先进行大规模的无差别数据训练,然后增加高质量数据的比例,进行第二阶段训练。
  • 大量数据训练:模型训练涉及10T(万亿)个token的第一阶段训练和100B(百亿)个token的第二阶段训练。
  • Transformer架构:基于Transformer架构,一种深度学习模型,广泛应用于自然语言处理任务。
  • 自注意力机制:模型使用自注意力机制处理输入序列中的每个元素,让模型能理解单词或短语之间的复杂关系。
  • 上下文建模:聊天模型支持不同长度的上下文,能根据对话历史生成回复,要求模型具备良好的上下文建模能力。
  • 优化策略:采用余弦退火等学习率调度策略,优化训练过程;采用BF16(Brain Floating Point 16)等混合精度训练技术,提高训练效率和减少内存使用。

如何运行 360Zhinao2-7B

依赖安装

  • python >= 3.8
  • pytorch >= 2.0
  • transformers >= 4.37.2
  • CUDA >= 11.4
pip install -r requirements.txt

可选安装Flash-Attention 2以提高性能和减少内存占用。

FLASH_ATTENTION_FORCE_BUILD=TRUE pip install flash-attn==2.3.6

🤗 Transformers

基础模型推理示例

from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.generation import GenerationConfig

MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Base"

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_NAME_OR_PATH, 
    trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME_OR_PATH,
    device_map="auto",
    trust_remote_code=True)

generation_config = GenerationConfig.from_pretrained(
    MODEL_NAME_OR_PATH,
    trust_remote_code=True)

inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
inputs = inputs.to(model.device)

pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))

聊天模型推理示例

from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.generation import GenerationConfig

MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Chat-4K"

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_NAME_OR_PATH, 
    trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME_OR_PATH,
    device_map="auto",
    trust_remote_code=True)

generation_config = GenerationConfig.from_pretrained(
    MODEL_NAME_OR_PATH,
    trust_remote_code=True)

messages = []
#round-1
messages.append({
   "role": "user", "content": "介绍一下刘德华"})
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
messages.append({
   "role": "assistant", "content": response})
print(messages)

#round-2
messages.append({
   "role": "user", "content": "他有什么代表作?"})
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
messages.append({
   "role": "assistant", "content": response})
print(messages)

🤖 ModelScope

基础模型推理示例

from modelscope import AutoModelForCausalLM, AutoTokenizer
from modelscope import GenerationConfig

MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Base"

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_NAME_OR_PATH, 
    trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME_OR_PATH,
    device_map="auto",
    trust_remote_code=True)

generation_config = GenerationConfig.from_pretrained(
    MODEL_NAME_OR_PATH,
    trust_remote_code=True)

inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
inputs = inputs.to(model.device)

pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))

聊天模型推理示例

from modelscope import AutoModelForCausalLM, AutoTokenizer
from modelscope import GenerationConfig

MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Chat-4K"

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_NAME_OR_PATH, 
    trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME_OR_PATH,
    device_map="auto",
    trust_remote_code=True)

generation_config = GenerationConfig.from_pretrained(
    MODEL_NAME_OR_PATH,
    trust_remote_code=True)

messages = []
#round-1
messages.append({
   "role": "user", "content": "介绍一下刘德华"})
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
messages.append({
   "role": "assistant", "content": response})
print(messages)

#round-2
messages.append({
   "role": "user", "content": "他有什么代表作?"})
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
messages.append({
   "role": "assistant", "content": response})
print(messages)

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
4月前
|
人工智能 新制造 云栖大会
TsingtaoAI亮相云栖大会,AI大模型赋能传统制造业焕新升级
2025年9月24日,杭州云栖小镇,2025云栖大会盛大开幕。作为全球AI技术与产业融合的重要平台,本届大会以“AI驱动产业变革”为主题,集中展示大模型技术在各领域的创新应用。 其中,由西湖区商务局牵头组织的“AI大模型应用与产业融合”专场论坛成为大会亮点之一,吸引了来自政府、企业及投资机构的百余名代表参与。 在论坛上,TsingtaoAI作为制造业智能化转型的代表企业,分享了在具身智能-制造企业的AI应用实践。
180 1
|
人工智能 自然语言处理 程序员
AI战略丨拓展智能边界,大模型体系全面升级
阿里云在基础模型体系和生态、模型工程化落地路径、端云协同解决方案等多维度上都在快速迭代。
|
编解码 人工智能 API
通义万相2.1视频/图像模型新升级!可在阿里云百炼直接体验
通义万相2.1模型推出新特征,包括复杂人物运动的稳定展现、现实物理规律的逼真还原及中英文视频特效的绚丽呈现。通过自研的高效VAE和DiT架构,增强时空上下文建模能力,支持无限长1080P视频的高效编解码,并首次实现中文文字视频生成功能。升级后的通义万相荣登VBench榜单第一,提供电影级分镜效果、四格漫画故事速览及情侣头像创意定制等多种玩法,满足多样化的视觉创作需求。可直接在阿里云百炼平台调用API体验这些功能。
4613 0
|
人工智能 自然语言处理 程序员
通义灵码2.0全新升级,AI程序员全面开放使用
通义灵码2.0来了,成为全球首个同时上线JetBrains和VSCode的AI 程序员产品!立即下载更新最新插件使用。
4023 85
通义灵码2.0全新升级,AI程序员全面开放使用
|
9月前
|
人工智能 Rust 自然语言处理
通义灵码2.5:四大升级亮点
通义灵码2.5不仅是一款工具,更是开发者思维的延伸。通过体验官计划,我们见证了AI如何将重复性工作转化为创意性探索。无论是新手还是资深工程师,都能借此释放生产力,聚焦于架构设计与创新。
200 16
|
8月前
|
人工智能 IDE 定位技术
通义灵码 AI IDE 正式上线,智能体自动写代码,首创自动记忆,工程感知全面升级
阿里云发布的通义灵码AI IDE深度适配千问3大模型,集成智能编码助手功能,支持编程智能体、工具调用、工程感知等能力。其核心亮点包括:支持最强开源模型千问3,全面集成通义灵码插件能力,自带编程智能体模式,支持长期记忆与行间建议预测(NES)。通义灵码已覆盖主流IDE,助力开发者实现高效智能编程,插件下载量超1500万,生成代码超30亿行,成为国内最受欢迎的辅助编程工具。立即体验更智能的开发流程!
2450 1
|
9月前
|
传感器 自然语言处理 搜索推荐
通义灵码 2.5 版体验报告:智能编程助手的全新升级
通义灵码2.5版通过Qwen3模型和智能体模式,显著提升了编程效率与体验。智能体可自主决策,快速完成应用开发;MCP工具广场提供3000+工具,一键安装便捷高效;记忆能力让工具越用越懂用户需求;Qwen3强大的自然语言处理能力助力复杂任务解析。界面友好、性能稳定,为开发者带来高效个性化体验,未来潜力巨大。
280 16
|
12月前
|
人工智能 数据挖掘 测试技术
大模型代肝,自动刷《崩铁》升级材料,Claude操纵计算机还能这么用!
Claude 3.5 Computer Use是首个提供公共测试的具备图形用户界面(GUI)操作能力的前沿AI模型,标志着GUI自动化领域的重要突破。它通过API调用实现端到端解决方案,能根据用户指令和视觉GUI状态生成操作,无需外部知识辅助。研究展示了其在网页搜索、工作流和生产力软件等任务中的卓越能力,并揭示了滚动导航等局限性。未来有望进一步优化并拓展应用领域。论文链接:https://arxiv.org/pdf/2411.10323。
439 38
|
12月前
|
机器学习/深度学习 存储 算法
DistilQwen2.5发布:通义千问蒸馏小模型再升级
为解决大语言模型在资源有限环境下的高计算成本和复杂性问题,阿里云推出了基于 Qwen2.5 的轻量化模型系列 DistilQwen2.5。该模型通过双层蒸馏框架、数据优化策略及参数融合技术,在保留性能的同时显著降低计算资源消耗。本文提供了详细的使用教程和代码示例,方便用户在 PAI 平台上调用。

热门文章

最新文章