基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真

简介: 本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):
1.jpeg
2.jpeg
3.jpeg

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
在现代无线通信系统中,多输入多输出(Multiple-Input Multiple-Output, MIMO)技术是提高频谱效率和数据传输速率的关键。然而,随着天线数量的增加,全数字预编码器的设计变得非常复杂且成本高昂。为了解决这一问题,混合预编码器结合了模拟域和数字域的处理,既保持了良好的性能又降低了硬件复杂度。交替最小化(Alternating Minimization, AltMin)是一种迭代优化方法,它通过交替优化不同的变量来逼近全局最优解。

   考虑一个具有Nt​根发射天线和Nr​根接收天线的MIMO系统,其中每个天线阵列连接到一个射频链路(RF chain)。假设系统使用混合预编码结构,发射端有NRF​个RF链路,接收端有NBB​个基带处理单元。混合预编码可以表示为:

1af5570e7fa3909d959991fb099c024d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

PE-AltMin算法流程图如下图所示:

2e9230e486ab954a00b7908adb9fdb6b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   PE-AltMin算法通过交替最小化的方法,逐步优化混合预编码器和组合器,以达到最小化均方误差的目的。这种方法不仅能够有效地降低硬件复杂度,还能提供接近全数字预编码的性能。尽管算法在理论上较为复杂,但在实际应用中表现出了良好的鲁棒性和收敛性。

3.MATLAB核心程序
```SNR_dB = -35:5:5;
SNR = 10.^(SNR_dB./10);
realization = 100;
smax = length(SNR);% enable the parallel

for reali = 1:realization
reali
[ FRF, FBB ] = PE_AltMin( Fopt(:,:,reali), NRF);
FBB = sqrt(Ns) FBB / norm(FRF FBB,'fro');
[ WRF, WBB ] = PE_AltMin( Wopt(:,:,reali), NRF);
for s = 1:smax
R(s,reali) = log2(det(eye(Ns) + SNR(s)/Ns pinv(WRF WBB) H(:,:,reali) FRF FBB FBB' FRF' H(:,:,reali)' WRF WBB));
end
end
plot(SNR_dB,sum(R,2)/realization,'g-->','LineWidth',1.5);
% plot(SNR_dB,sum(R,2)/realization,'Marker','>','LineWidth',1.5,'Color',[0 0.447058826684952 0.74117648601532]);
grid on
hold on
if SEL == 1
save snrns2.mat SNR_dB R realization
end
if SEL == 2
save snrns4.mat SNR_dB R realization
end
if SEL == 3
save snrns8.mat SNR_dB R realization
end
0X_072m
```

相关文章
|
14天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
72 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
4天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
14天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
24天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
119 66
|
15天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
15天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
13天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
12天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
20天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。

热门文章

最新文章