【C语言】时间函数详解

简介: 在C语言中,时间处理功能由标准库 `time.h` 提供。使用这些函数时,需要包含 `#include <time.h>` 头文件。以下是一些常用的时间函数的详细讲解,包括函数原型、参数说明、返回值说明以及示例代码和表格汇总。

C语言时间函数详解

在C语言中,时间处理功能由标准库 time.h 提供。使用这些函数时,需要包含 #include <time.h> 头文件。以下是一些常用的时间函数的详细讲解,包括函数原型、参数说明、返回值说明以及示例代码和表格汇总。

表格汇总

函数 作用 示例 输出
time 获取当前时间 time(NULL) 时间戳
localtime 将时间戳转换为本地时间结构体 localtime(&timestamp) struct tm 结构体
gmtime 将时间戳转换为UTC时间结构体 gmtime(&timestamp) struct tm 结构体
strftime 格式化时间为字符串 strftime(buffer, size, format, &tm) 格式化后的时间字符串
clock 获取程序运行时间 clock() CPU时间
difftime 计算两个时间点之间的差值 difftime(end, start) 时间差(秒)
mktime struct tm转换为时间戳 mktime(&tm) 时间戳

1. time

函数原型:

time_t time(time_t *t);

参数说明:

  • t: 如果不为 NULL,则函数将当前时间存储在 t 指向的变量中。

返回值说明:

  • 返回当前的时间戳(从1970年1月1日00:00:00 UTC到现在的秒数)。

示例代码:

#include <stdio.h>
#include <time.h>

int main() {
   
    time_t current_time;
    current_time = time(NULL);
    printf("当前时间戳: %ld\n", (long)current_time); // 输出: 当前时间戳: 1634602475
    return 0;
}

表格说明:

函数 作用 示例 输出
time 获取当前时间 time(NULL) 当前时间戳

2. localtime

函数原型:

struct tm *localtime(const time_t *timep);

参数说明:

  • timep: 指向 time_t 类型的时间戳。

返回值说明:

  • 返回指向 struct tm 结构体的指针,该结构体包含本地时间的详细信息。

示例代码:

#include <stdio.h>
#include <time.h>

int main() {
   
    time_t current_time;
    struct tm *local_time;

    current_time = time(NULL);
    local_time = localtime(&current_time);

    printf("本地时间: %04d-%02d-%02d %02d:%02d:%02d\n",
           local_time->tm_year + 1900,
           local_time->tm_mon + 1,
           local_time->tm_mday,
           local_time->tm_hour,
           local_time->tm_min,
           local_time->tm_sec); // 输出: 本地时间: 2024-08-15 12:34:56
    return 0;
}

表格说明:

函数 作用 示例 输出
localtime 将时间戳转换为本地时间结构体 localtime(&current_time) 本地时间: 2024-08-15 12:34:56

3. gmtime

函数原型:

struct tm *gmtime(const time_t *timep);

参数说明:

  • timep: 指向 time_t 类型的时间戳。

返回值说明:

  • 返回指向 struct tm 结构体的指针,该结构体包含UTC时间的详细信息。

示例代码:

#include <stdio.h>
#include <time.h>

int main() {
   
    time_t current_time;
    struct tm *utc_time;

    current_time = time(NULL);
    utc_time = gmtime(&current_time);

    printf("UTC时间: %04d-%02d-%02d %02d:%02d:%02d\n",
           utc_time->tm_year + 1900,
           utc_time->tm_mon + 1,
           utc_time->tm_mday,
           utc_time->tm_hour,
           utc_time->tm_min,
           utc_time->tm_sec); // 输出: UTC时间: 2024-08-15 04:34:56
    return 0;
}

表格说明:

函数 作用 示例 输出
gmtime 将时间戳转换为UTC时间结构体 gmtime(&current_time) UTC时间: 2024-08-15 04:34:56

4. strftime

函数原型:

size_t strftime(char *str, size_t maxsize, const char *format, const struct tm *tm);

参数说明:

  • str: 指向存储格式化时间字符串的缓冲区。
  • maxsize: 缓冲区的最大大小。
  • format: 格式化时间的格式字符串。
  • tm: 指向 struct tm 结构体的指针。

返回值说明:

  • 返回格式化字符串的长度。如果返回值等于0,则表示缓冲区不够大,未能完全写入。

示例代码:

#include <stdio.h>
#include <time.h>

int main() {
   
    time_t current_time;
    struct tm *local_time;
    char buffer[80];

    current_time = time(NULL);
    local_time = localtime(&current_time);

    strftime(buffer, sizeof(buffer), "当前时间: %Y-%m-%d %H:%M:%S", local_time);
    printf("%s\n", buffer); // 输出: 当前时间: 2024-08-15 12:34:56
    return 0;
}

表格说明:

函数 作用 示例 输出
strftime 格式化时间为字符串 strftime(buffer, sizeof(buffer), "%Y-%m-%d %H:%M:%S", &local_time) 当前时间: 2024-08-15 12:34:56

5. clock

函数原型:

clock_t clock(void);

参数说明:

  • 无参数。

返回值说明:

  • 返回程序从启动到当前时刻所消耗的CPU时间,以时钟计数的形式表示。

示例代码:

#include <stdio.h>
#include <time.h>

int main() {
   
    clock_t start, end;
    double cpu_time_used;

    start = clock();
    // 模拟耗时操作
    for (long i = 0; i < 1000000000; i++);
    end = clock();

    cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
    printf("程序运行时间: %f 秒\n", cpu_time_used); // 输出: 程序运行时间: 0.123456 秒
    return 0;
}

表格说明:

函数 作用 示例 输出
clock 获取程序运行时间 clock() 程序运行时间: 0.123456 秒

6. difftime

函数原型:

double difftime(time_t time1, time_t time2);

参数说明:

  • time1: 第二个时间点的时间戳。
  • time2: 第一个时间点的时间戳。

返回值说明:

  • 返回 time1time2 之间的时间差,以秒为单位。结果为 time1 - time2 的值。

示例代码:

#include <stdio.h>
#include <time.h>

int main() {
   
    time_t start, end;
    double difference;

    // 获取当前时间戳作为开始时间
    start = time(NULL);

    // 模拟耗时操作
    for (long i = 0; i < 1000000000; i++);

    // 获取当前时间戳作为结束时间
    end = time(NULL);

    // 计算两个时间戳之间的差值
    difference = difftime(end, start);

    printf("时间差: %.f 秒\n", difference); // 输出: 时间差: 2 秒
    return 0;
}

表格说明:

函数 作用 示例 输出
difftime 计算两个时间点之间的时间差(秒) difftime(end, start) 时间差: 2 秒

函数详解

difftime 函数用于计算两个时间点之间的差值,并以秒为单位返回。它的参数是两个 time_t 类型的时间戳。time1time2 分别表示结束时间和开始时间。函数返回 time1 - time2 的结果,结果是一个 double 类型的值,表示时间差(秒)。

示例解释

在上面的示例代码中,我们首先获取了当前时间的时间戳 start,然后模拟了一个耗时的操作。之后,再次获取当前时间的时间戳 end。使用 difftime 函数计算 endstart 之间的时间差,得到的结果表示操作所花费的时间(以秒为单位),并打印出来。

这种计算在需要测量程序运行时间、执行时间段的任务等情况下非常有用。通过 difftime 函数,可以方便地获取两个时间点之间的时间差,从而分析和优化程序性能。

7. mktime

函数原型:

time_t mktime(struct tm *tm);

参数说明:

  • tm: 指向 struct tm 结构体的指针,该结构体包含要转换为时间戳的本地时间信息。

返回值说明:

  • 返回将 struct tm 结构体表示的本地时间转换为 time_t 类型的时间戳。如果无法转换,返回 -1

示例代码:

#include <stdio.h>
#include <time.h>

int main() {
   
    struct tm time_info;
    time_t timestamp;

    // 设置特定的时间
    time_info.tm_year = 2024 - 1900;  // 年份从1900年开始
    time_info.tm_mon = 7;             // 月份从0开始(即8月)
    time_info.tm_mday = 15;           // 日期
    time_info.tm_hour = 12;
    time_info.tm_min = 30;
    time_info.tm_sec = 0;
    time_info.tm_isdst = -1;          // 让系统自动判断夏令时

    timestamp = mktime(&time_info);

    if (timestamp != -1) {
   
        printf("时间戳: %ld\n", (long)timestamp); // 输出: 时间戳: 1713102600
    } else {
   
        printf("时间转换失败\n");
    }

    return 0;
}

表格说明:

函数 作用 示例 输出
mktime struct tm 转换为时间戳 mktime(&time_info) 时间戳: 1713102600

8. asctime

函数原型:

char *asctime(const struct tm *tm);

参数说明:

  • tm: 指向 struct tm 结构体的指针。

返回值说明:

  • 返回一个指向包含时间的字符串的指针,字符串的格式为 "Day Mon Date HH:MM:SS Year\n"

示例代码:

#include <stdio.h>
#include <time.h>

int main() {
   
    time_t current_time;
    struct tm *local_time;
    char *time_str;

    current_time = time(NULL);
    local_time = localtime(&current_time);
    time_str = asctime(local_time);

    printf("本地时间: %s", time_str); // 输出: 本地时间: Mon Aug 15 12:34:56 2024\n
    return 0;
}

表格说明:

函数 作用 示例 输出
asctime struct tm 转换为字符串 asctime(&local_time) 本地时间: Mon Aug 15 12:34:56 2024\n

9. ctime

函数原型:

char *ctime(const time_t *timep);

参数说明:

  • timep: 指向 time_t 类型的时间戳。

返回值说明:

  • 返回一个指向包含时间的字符串的指针,字符串的格式为 "Day Mon Date HH:MM:SS Year\n"

示例代码:

#include <stdio.h>
#include <time.h>

int main() {
   
    time_t current_time;
    char *time_str;

    current_time = time(NULL);
    time_str = ctime(&current_time);

    printf("当前时间: %s", time_str); // 输出: 当前时间: Mon Aug 15 12:34:56 2024\n
    return 0;
}

表格说明:

函数 作用 示例 输出
ctime 将时间戳转换为字符串 ctime(&current_time) 当前时间: Mon Aug 15 12:34:56 2024\n

10. clock_gettimeclock_settime

函数原型:

int clock_gettime(clockid_t clk_id, struct timespec *tp);
int clock_settime(clockid_t clk_id, const struct timespec *tp);

参数说明:

  • clk_id: 计时器ID,通常是 CLOCK_REALTIMECLOCK_MONOTONIC
  • tp: 指向 struct timespec 结构体的指针,struct timespec 结构体定义如下:
    struct timespec {
         
        time_t tv_sec;  // 秒
        long   tv_nsec; // 纳秒
    };
    

返回值说明:

  • 成功时返回 0,失败时返回 -1,并设置 errno 以指示错误类型。

示例代码:

#include <stdio.h>
#include <time.h>

int main() {
   
    struct timespec ts;

    // 获取当前时间
    if (clock_gettime(CLOCK_REALTIME, &ts) == 0) {
   
        printf("当前时间: %ld 秒, %ld 纳秒\n", ts.tv_sec, ts.tv_nsec); // 输出: 当前时间: 1634602475 秒, 123456789 纳秒
    } else {
   
        perror("clock_gettime");
    }

    return 0;
}

表格说明:

函数 作用 示例 输出
clock_gettime 获取指定时钟的时间 clock_gettime(CLOCK_REALTIME, &ts) 当前时间: 1634602475 秒, 123456789 纳秒

总结

在C语言中,时间函数提供了丰富的功能来处理时间和日期。time 函数获取当前时间戳,localtimegmtime 函数将时间戳转换为 struct tm 结构体表示的本地时间和UTC时间。strftime 函数格式化时间字符串,clock 函数获取程序的CPU时间,difftime 函数计算两个时间点之间的差值,mktime 函数将 struct tm 结构体转换为时间戳。asctimectime 函数将时间转换为字符串格式。

了解并正确使用这些时间函数,可以有效地处理时间和日期相关的任务,从而在程序中实现各种时间计算和格式化需求。

9. 结束语

  1. 本节内容已经全部介绍完毕,希望通过这篇文章,大家对C语言时间函数有了更深入的理解和认识。
  2. 感谢各位的阅读和支持,如果觉得这篇文章对你有帮助,请不要吝惜你的点赞和评论,这对我们非常重要。再次感谢大家的关注和支持
目录
相关文章
|
5天前
|
人工智能 自动驾驶 大数据
预告 | 阿里云邀您参加2024中国生成式AI大会上海站,马上报名
大会以“智能跃进 创造无限”为主题,设置主会场峰会、分会场研讨会及展览区,聚焦大模型、AI Infra等热点议题。阿里云智算集群产品解决方案负责人丛培岩将出席并发表《高性能智算集群设计思考与实践》主题演讲。观众报名现已开放。
|
21天前
|
存储 人工智能 弹性计算
阿里云弹性计算_加速计算专场精华概览 | 2024云栖大会回顾
2024年9月19-21日,2024云栖大会在杭州云栖小镇举行,阿里云智能集团资深技术专家、异构计算产品技术负责人王超等多位产品、技术专家,共同带来了题为《AI Infra的前沿技术与应用实践》的专场session。本次专场重点介绍了阿里云AI Infra 产品架构与技术能力,及用户如何使用阿里云灵骏产品进行AI大模型开发、训练和应用。围绕当下大模型训练和推理的技术难点,专家们分享了如何在阿里云上实现稳定、高效、经济的大模型训练,并通过多个客户案例展示了云上大模型训练的显著优势。
|
25天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
16天前
|
并行计算 前端开发 物联网
全网首发!真·从0到1!万字长文带你入门Qwen2.5-Coder——介绍、体验、本地部署及简单微调
2024年11月12日,阿里云通义大模型团队正式开源通义千问代码模型全系列,包括6款Qwen2.5-Coder模型,每个规模包含Base和Instruct两个版本。其中32B尺寸的旗舰代码模型在多项基准评测中取得开源最佳成绩,成为全球最强开源代码模型,多项关键能力超越GPT-4o。Qwen2.5-Coder具备强大、多样和实用等优点,通过持续训练,结合源代码、文本代码混合数据及合成数据,显著提升了代码生成、推理和修复等核心任务的性能。此外,该模型还支持多种编程语言,并在人类偏好对齐方面表现出色。本文为周周的奇妙编程原创,阿里云社区首发,未经同意不得转载。
11602 12
|
10天前
|
人工智能 自然语言处理 前端开发
100个降噪蓝牙耳机免费领,用通义灵码从 0 开始打造一个完整APP
打开手机,录制下你完成的代码效果,发布到你的社交媒体,前 100 个@玺哥超Carry、@通义灵码的粉丝,可以免费获得一个降噪蓝牙耳机。
4101 14
|
17天前
|
人工智能 自然语言处理 前端开发
用通义灵码,从 0 开始打造一个完整APP,无需编程经验就可以完成
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。本教程完全免费,而且为大家准备了 100 个降噪蓝牙耳机,送给前 100 个完成的粉丝。获奖的方式非常简单,只要你跟着教程完成第一课的内容就能获得。
6859 10
|
29天前
|
缓存 监控 Linux
Python 实时获取Linux服务器信息
Python 实时获取Linux服务器信息
|
15天前
|
人工智能 自然语言处理 前端开发
什么?!通义千问也可以在线开发应用了?!
阿里巴巴推出的通义千问,是一个超大规模语言模型,旨在高效处理信息和生成创意内容。它不仅能在创意文案、办公助理、学习助手等领域提供丰富交互体验,还支持定制化解决方案。近日,通义千问推出代码模式,基于Qwen2.5-Coder模型,用户即使不懂编程也能用自然语言生成应用,如个人简历、2048小游戏等。该模式通过预置模板和灵活的自定义选项,极大简化了应用开发过程,助力用户快速实现创意。
|
3天前
|
机器学习/深度学习 人工智能 安全
通义千问开源的QwQ模型,一个会思考的AI,百炼邀您第一时间体验
Qwen团队推出新成员QwQ-32B-Preview,专注于增强AI推理能力。通过深入探索和试验,该模型在数学和编程领域展现了卓越的理解力,但仍在学习和完善中。目前,QwQ-32B-Preview已上线阿里云百炼平台,提供免费体验。
|
11天前
|
人工智能 C++ iOS开发
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
764 5