【C语言】深入浅出:C语言链表的全面解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 链表是一种重要的基础数据结构,适用于频繁的插入和删除操作。通过本篇详细讲解了单链表、双向链表和循环链表的概念和实现,以及各类常用操作的示例代码。掌握链表的使用对于理解更复杂的数据结构和算法具有重要意义。

链表是一种常见的数据结构,由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。链表的最大特点是节点在内存中不必连续存储,因而在插入和删除操作时更加高效。下面我们将详细讲解C语言中单链表、双向链表和循环链表的基本概念、实现方法及其相关操作。

以下是本文中提到的重要内容及其简要描述的表格:

内容 描述
单链表(Singly Linked List) 每个节点包含一个数据域和一个指针域,指向下一个节点。头节点指向链表的第一个节点,尾节点指向 NULL
双向链表(Doubly Linked List) 每个节点包含数据域、前驱指针和后继指针,允许双向遍历。前驱指针指向前一个节点,后继指针指向后一个节点。
循环链表(Circular Linked List) 最后一个节点的指针域指向头节点,形成一个环形结构。可以是单向的或双向的。
创建节点 动态分配内存,为链表创建新节点。
插入节点 将新节点插入到链表中的特定位置或链表末尾。
删除节点 从链表中移除特定节点,并释放相应的内存。
动态内存分配 链表节点在运行时动态分配和释放内存,不需要在编译时指定大小。
插入和删除效率 插入和删除操作效率高,在已知节点位置的情况下时间复杂度为 O(1)。
随机访问效率 随机访问效率低,无法通过索引直接访问元素,必须从头开始遍历,时间复杂度为 O(n)。
应用 常用于实现队列、栈、图和网络的表示等数据结构,以及内存管理中的空闲块管理。

一、单链表

1. 基本概念

单链表(Singly Linked List)是一种链表结构,其中每个节点包含一个数据域和一个指针域,指针域指向下一个节点。链表的第一个节点称为头节点,最后一个节点的指针域指向NULL,表示链表的结束。

节点结构定义

struct Node {
   
    int data;          // 数据域
    struct Node* next; // 指针域,指向下一个节点
};

2. 创建链表

示例代码

#include <stdio.h>
#include <stdlib.h>

// 节点结构定义
struct Node {
   
    int data;
    struct Node* next;
};

// 创建新节点
struct Node* createNode(int data) {
   
    struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
    newNode->data = data;
    newNode->next = NULL;
    return newNode;
}

// 添加节点到链表末尾
void append(struct Node** headRef, int data) {
   
    struct Node* newNode = createNode(data);
    if (*headRef == NULL) {
   
        *headRef = newNode;
    } else {
   
        struct Node* temp = *headRef;
        while (temp->next != NULL) {
   
            temp = temp->next;
        }
        temp->next = newNode;
    }
}

// 打印链表
void printList(struct Node* head) {
   
    struct Node* temp = head;
    while (temp != NULL) {
   
        printf("%d -> ", temp->data);
        temp = temp->next;
    }
    printf("NULL\n");
}

int main() {
   
    struct Node* head = NULL;
    append(&head, 1);
    append(&head, 2);
    append(&head, 3);
    printList(head);
    return 0;
}

输出结果

1 -> 2 -> 3 -> NULL

3. 插入节点

示例代码

// 在特定位置插入新节点
void insertAfter(struct Node* prevNode, int data) {
   
    if (prevNode == NULL) {
   
        printf("前置节点不能为空\n");
        return;
    }
    struct Node* newNode = createNode(data);
    newNode->next = prevNode->next;
    prevNode->next = newNode;
}

int main() {
   
    struct Node* head = NULL;
    append(&head, 1);
    append(&head, 2);
    append(&head, 3);
    insertAfter(head->next, 4); // 在第二个节点后插入4
    printList(head);
    return 0;
}

输出结果

1 -> 2 -> 4 -> 3 -> NULL

4. 删除节点

示例代码

// 删除包含特定数据的节点
void deleteNode(struct Node** headRef, int key) {
   
    struct Node* temp = *headRef;
    struct Node* prev = NULL;

    if (temp != NULL && temp->data == key) {
   
        *headRef = temp->next;
        free(temp);
        return;
    }

    while (temp != NULL && temp->data != key) {
   
        prev = temp;
        temp = temp->next;
    }

    if (temp == NULL) return;

    prev->next = temp->next;
    free(temp);
}

int main() {
   
    struct Node* head = NULL;
    append(&head, 1);
    append(&head, 2);
    append(&head, 3);
    deleteNode(&head, 2); // 删除包含数据2的节点
    printList(head);
    return 0;
}

输出结果

1 -> 3 -> NULL

二、双向链表

1. 基本概念

双向链表(Doubly Linked List)是一种链表结构,其中每个节点包含三个部分:数据域、前驱指针域和后继指针域。前驱指针指向前一个节点,后继指针指向后一个节点。双向链表允许双向遍历。

节点结构定义

struct DNode {
   
    int data;
    struct DNode* prev; // 前驱指针
    struct DNode* next; // 后继指针
};

2. 创建双向链表

示例代码

#include <stdio.h>
#include <stdlib.h>

// 双向链表节点结构定义
struct DNode {
   
    int data;
    struct DNode* prev;
    struct DNode* next;
};

// 创建新节点
struct DNode* createDNode(int data) {
   
    struct DNode* newNode = (struct DNode*)malloc(sizeof(struct DNode));
    newNode->data = data;
    newNode->prev = NULL;
    newNode->next = NULL;
    return newNode;
}

// 添加节点到链表末尾
void appendD(struct DNode** headRef, int data) {
   
    struct DNode* newNode = createDNode(data);
    if (*headRef == NULL) {
   
        *headRef = newNode;
    } else {
   
        struct DNode* temp = *headRef;
        while (temp->next != NULL) {
   
            temp = temp->next;
        }
        temp->next = newNode;
        newNode->prev = temp;
    }
}

// 打印双向链表
void printDList(struct DNode* head) {
   
    struct DNode* temp = head;
    while (temp != NULL) {
   
        printf("%d <-> ", temp->data);
        temp = temp->next;
    }
    printf("NULL\n");
}

int main() {
   
    struct DNode* head = NULL;
    appendD(&head, 1);
    appendD(&head, 2);
    appendD(&head, 3);
    printDList(head);
    return 0;
}

输出结果

1 <-> 2 <-> 3 <-> NULL

3. 插入节点

示例代码

// 在特定节点后插入新节点
void insertAfterD(struct DNode* prevNode, int data) {
   
    if (prevNode == NULL) {
   
        printf("前置节点不能为空\n");
        return;
    }
    struct DNode* newNode = createDNode(data);
    newNode->next = prevNode->next;
    prevNode->next = newNode;
    newNode->prev = prevNode;
    if (newNode->next != NULL) {
   
        newNode->next->prev = newNode;
    }
}

int main() {
   
    struct DNode* head = NULL;
    appendD(&head, 1);
    appendD(&head, 2);
    appendD(&head, 3);
    insertAfterD(head->next, 4); // 在第二个节点后插入4
    printDList(head);
    return 0;
}

输出结果

1 <-> 2 <-> 4 <-> 3 <-> NULL

4. 删除节点

示例代码

// 删除包含特定数据的节点
void deleteDNode(struct DNode** headRef, int key) {
   
    struct DNode* temp = *headRef;

    while (temp != NULL && temp->data != key) {
   
        temp = temp->next;
    }

    if (temp == NULL) return;

    if (temp->prev != NULL) {
   
        temp->prev->next = temp->next;
    } else {
   
        *headRef = temp->next;
    }

    if (temp->next != NULL) {
   
        temp->next->prev = temp->prev;
    }

    free(temp);
}

int main() {
   
    struct DNode* head = NULL;
    appendD(&head, 1);
    appendD(&head, 2);
    appendD(&head, 3);
    deleteDNode(&head, 2); // 删除包含数据2的节点
    printDList(head);
    return 0;
}

输出结果

1 <-> 3 <-> NULL

三、循环链表

1. 基本概念

循环链表(Circular Linked List)是一种链表结构,其中最后一个节点的指针域指向链表的头节点,形成一个环形结构。循环链表可以是单向的或双向的。

节点结构定义

struct CNode {
   
    int data;
    struct CNode* next;
};

2. 创建循环链表

示例代码

#include <stdio.h>
#include <stdlib.h>

// 循环链表节点结构定义
struct CNode {
   
    int data;
    struct CNode* next;
};

// 创建新节点
struct CNode* createCNode(int data) {
   
    struct CNode* newNode = (struct CNode*)malloc(sizeof(struct CNode));
    newNode->data = data;
    newNode->next = newNode; // 初始时,节点的next指向自身
    return newNode;
}

// 添加节点到循环链表末尾
void appendC(struct CNode** headRef, int data) {
   
    struct CNode* newNode = createCNode(data);
    if (*headRef == NULL) {
   
        *headRef = newNode;
    } else {
   
        struct CNode* temp = *headRef;
        while (temp->next != *headRef) {
   
            temp = temp->next;
        }
        temp->next = newNode;
        newNode->next = *headRef;
    }
}

// 打印循环链表
void printCList(struct CNode* head) {
   
    if (head == NULL) return;
    struct CNode* temp = head;
    do {
   
        printf("%d -> ", temp->data);
        temp = temp->next;
    } while (temp != head);
    printf("(back to head)\n");
}

int main() {
   
    struct CNode* head = NULL;
    appendC(&head, 1);
    appendC(&head, 2);
    appendC(&head, 3);
    printCList(head);
    return 0;
}

输出结果

1 -> 2 -> 3 -> (back to head)

3. 插入节点

在循环链表中插入节点时,需要特别小心处理环的连接,以确保新节点正确地链接到链表中。

示例代码

// 在特定位置后插入新节点
void insertAfterC(struct CNode* prevNode, int data) {
   
    if (prevNode == NULL) {
   
        printf("前置节点不能为空\n");
        return;
    }
    struct CNode* newNode = createCNode(data);
    newNode->next = prevNode->next;
    prevNode->next = newNode;
}

int main() {
   
    struct CNode* head = NULL;
    appendC(&head, 1);
    appendC(&head, 2);
    appendC(&head, 3);
    insertAfterC(head->next, 4); // 在第二个节点后插入4
    printCList(head);
    return 0;
}

输出结果

1 -> 2 -> 4 -> 3 -> (back to head)

4. 删除节点

在循环链表中删除节点时,特别要注意处理头节点的删除和尾节点的循环连接。

示例代码

// 删除包含特定数据的节点
void deleteCNode(struct CNode** headRef, int key) {
   
    if (*headRef == NULL) return;

    struct CNode *curr = *headRef, *prev = NULL;

    // 处理头节点可能是目标节点的情况
    if (curr->data == key) {
   
        while (curr->next != *headRef) {
   
            curr = curr->next;
        }
        if (curr == *headRef) {
    // 链表只有一个节点
            free(*headRef);
            *headRef = NULL;
        } else {
    // 链表有多个节点
            curr->next = (*headRef)->next;
            free(*headRef);
            *headRef = curr->next;
        }
        return;
    }

    // 查找目标节点
    do {
   
        prev = curr;
        curr = curr->next;
    } while (curr != *headRef && curr->data != key);

    // 未找到目标节点
    if (curr == *headRef) return;

    // 解除目标节点
    prev->next = curr->next;
    free(curr);
}

int main() {
   
    struct CNode* head = NULL;
    appendC(&head, 1);
    appendC(&head, 2);
    appendC(&head, 3);
    deleteCNode(&head, 2); // 删除包含数据2的节点
    printCList(head);
    return 0;
}

输出结果

1 -> 3 -> (back to head)

四、链表的优缺点与应用

1. 优点

  1. 动态内存分配:链表可以在运行时动态分配和释放内存,不需要在编译时指定大小。
  2. 插入和删除效率高:在已知节点位置的情况下,链表的插入和删除操作非常高效,时间复杂度为 O(1)。

2. 缺点

  1. 额外的存储开销:每个节点需要存储指针,增加了内存使用。
  2. 随机访问不便:无法通过索引直接访问元素,必须从头开始遍历,时间复杂度为 O(n)。

3. 常见应用

  1. 实现数据结构:如队列、栈等。
  2. 内存管理:如动态内存分配器的空闲块管理。
  3. 图和网络的表示:如邻接表表示法。

五、总结

链表是一种重要的基础数据结构,适用于频繁的插入和删除操作。通过本篇详细讲解了单链表、双向链表和循环链表的概念和实现,以及各类常用操作的示例代码。掌握链表的使用对于理解更复杂的数据结构和算法具有重要意义。

六、结束语

  1. 本节内容已经全部介绍完毕,希望通过这篇文章,大家对C语言链表有了更深入的理解和认识。
  2. 感谢各位的阅读和支持,如果觉得这篇文章对你有帮助,请不要吝惜你的点赞和评论,这对我们非常重要。再次感谢大家的关注和支持
目录
相关文章
|
28天前
|
存储 网络协议 编译器
【C语言】深入解析C语言结构体:定义、声明与高级应用实践
通过根据需求合理选择结构体定义和声明的放置位置,并灵活结合动态内存分配、内存优化和数据结构设计,可以显著提高代码的可维护性和运行效率。在实际开发中,建议遵循以下原则: - **模块化设计**:尽可能封装实现细节,减少模块间的耦合。 - **内存管理**:明确动态分配与释放的责任,防止资源泄漏。 - **优化顺序**:合理排列结构体成员以减少内存占用。
129 14
|
1月前
|
存储 编译器 C语言
【C语言】数据类型全解析:编程效率提升的秘诀
在C语言中,合理选择和使用数据类型是编程的关键。通过深入理解基本数据类型和派生数据类型,掌握类型限定符和扩展技巧,可以编写出高效、稳定、可维护的代码。无论是在普通应用还是嵌入式系统中,数据类型的合理使用都能显著提升程序的性能和可靠性。
47 8
|
1月前
|
存储 网络协议 算法
【C语言】进制转换无难事:二进制、十进制、八进制与十六进制的全解析与实例
进制转换是计算机编程中常见的操作。在C语言中,了解如何在不同进制之间转换数据对于处理和显示数据非常重要。本文将详细介绍如何在二进制、十进制、八进制和十六进制之间进行转换。
40 5
|
1月前
|
C语言 开发者
【C语言】断言函数 -《深入解析C语言调试利器 !》
断言(assert)是一种调试工具,用于在程序运行时检查某些条件是否成立。如果条件不成立,断言会触发错误,并通常会终止程序的执行。断言有助于在开发和测试阶段捕捉逻辑错误。
41 5
|
1月前
|
安全 搜索推荐 Unix
【C语言】《回调函数》详细解析
回调函数是指一个通过函数指针调用的函数。它允许将一个函数作为参数传递给另一个函数,并在特定事件发生时执行。这种技术使得编程更加灵活,可以动态决定在何时调用哪个函数。
43 1
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
87 2
|
3月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
87 0
|
3月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
68 0
|
11天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
11天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析

推荐镜像

更多