iDP3:斯坦福大学联合多所高校推出的改进型3D视觉运动策略

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: iDP3是由斯坦福大学联合多所高校推出的改进型3D视觉运动策略,旨在提升人形机器人在多样化环境中的自主操作能力。该策略基于自我中心的3D视觉表征,无需精确相机校准和点云分割,显著提高了机器人在未见过的环境中的实用性和灵活性。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 技术背景:iDP3基于自我中心的3D视觉表征,摒弃了对精确相机校准和点云分割的需求。
  2. 主要功能:iDP3在视图变化、新对象识别和新场景适应方面展现出卓越的泛化能力。
  3. 应用场景:iDP3可应用于家庭自动化、工业自动化、医疗辅助、搜索与救援及教育与培训等多个领域。

正文(附运行示例)

iDP3 是什么

公众号: 蚝油菜花 - Improved-3D-Diffusion-Policy

iDP3(Improved 3D Diffusion Policy)是斯坦福大学联合多所高校推出的改进型3D视觉运动策略,旨在提升人形机器人在多样化环境中的自主操作能力。与传统3D策略不同,iDP3基于自我中心的3D视觉表征,摒弃了对精确相机校准和点云分割的需求,使机器人能够在真实世界中灵活执行任务。

iDP3在视图变化、新对象识别和新场景适应方面展现出卓越的泛化能力,显著提高了人形机器人在未见过的环境中的实用性和灵活性。

iDP3 的主要功能

  • 自我中心3D视觉表征:直接在相机帧中处理3D数据,消除对相机校准和点云分割的需求。
  • 视图泛化:在视图发生大的变化时仍然准确地抓取物体,不受训练时特定视角的限制。
  • 对象泛化:能处理在训练中未见过的物体,不依赖于特定对象的特征。
  • 场景泛化:在未见过的环境中执行任务,即使这些环境在复杂性和噪声水平上与训练环境有所不同。
  • 高效率:在训练和部署时表现出高效率,减少对大量数据集的依赖,快速适应新环境。

iDP3 的技术原理

  • 3D视觉输入:基于从LiDAR相机获取的3D点云数据,提供机器人周围环境的详细空间信息。
  • 自我中心视角:直接使用相机帧中的3D表示,不同于传统的3D策略。
  • 扩大视觉输入:通过增加采样点的数量捕捉整个场景,提高对场景的全面理解。
  • 改进的视觉编码器:用金字塔卷积编码器替代传统的多层感知器(MLP)视觉编码器,提高从人类示范中学习时的平滑性和准确性。
  • 更长的预测视野:为应对人类专家的抖动和传感器噪声,基于延长预测视野提高学习效果。
  • 优化和推理:在训练时使用AdamW优化器,用DDIM(Denoising Diffusion Implicit Models)进行扩散过程的优化和推理。

如何运行 iDP3

安装

首先,安装conda环境和相关包:

conda remove -n idp3 --all
conda create -n idp3 python=3.8
conda activate idp3

# 安装torch
pip3 install torch==2.1.0 torchvision --index-url https://download.pytorch.org/whl/cu121

# 安装其他依赖
pip install kaleido plotly open3d tyro termcolor h5py
cd third_party/visualizer && pip install -e . && cd ../..
pip install --no-cache-dir wandb ipdb gpustat visdom notebook mediapy torch_geometric natsort scikit-video easydict pandas moviepy imageio imageio-ffmpeg termcolor av open3d dm_control dill==0.3.5.1 hydra-core==1.2.0 einops==0.4.1 diffusers==0.11.1 zarr==2.12.0 numba==0.56.4 pygame==2.1.2 shapely==1.8.4 tensorboard==2.10.1 tensorboardx==2.5.1 absl-py==0.13.0 pyparsing==2.4.7 jupyterlab==3.0.14 scikit-image yapf==0.31.0 opencv-python==4.5.3.56 psutil av matplotlib setuptools==59.5.0

cd Improved-3D-Diffusion-Policy
pip install -e .
cd ..

# 安装timm和r3m
pip install timm==0.9.7
cd third_party/r3m && pip install -e . && cd ../..

使用

下载训练数据示例并解压,然后在scripts/train_policy.sh中指定数据集路径。例如:

dataset_path=/home/ze/projects/Improved-3D-Diffusion-Policy/training_data_example

训练策略:

bash scripts/train_policy.sh idp3 gr1_dex-3d 0913_example

部署策略:

bash scripts/deploy_policy.sh idp3 gr1_dex-3d 0913_example

可视化训练数据:

bash scripts/vis_dataset.sh

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
5天前
|
人工智能 自动驾驶 大数据
预告 | 阿里云邀您参加2024中国生成式AI大会上海站,马上报名
大会以“智能跃进 创造无限”为主题,设置主会场峰会、分会场研讨会及展览区,聚焦大模型、AI Infra等热点议题。阿里云智算集群产品解决方案负责人丛培岩将出席并发表《高性能智算集群设计思考与实践》主题演讲。观众报名现已开放。
|
21天前
|
存储 人工智能 弹性计算
阿里云弹性计算_加速计算专场精华概览 | 2024云栖大会回顾
2024年9月19-21日,2024云栖大会在杭州云栖小镇举行,阿里云智能集团资深技术专家、异构计算产品技术负责人王超等多位产品、技术专家,共同带来了题为《AI Infra的前沿技术与应用实践》的专场session。本次专场重点介绍了阿里云AI Infra 产品架构与技术能力,及用户如何使用阿里云灵骏产品进行AI大模型开发、训练和应用。围绕当下大模型训练和推理的技术难点,专家们分享了如何在阿里云上实现稳定、高效、经济的大模型训练,并通过多个客户案例展示了云上大模型训练的显著优势。
|
25天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
16天前
|
并行计算 前端开发 物联网
全网首发!真·从0到1!万字长文带你入门Qwen2.5-Coder——介绍、体验、本地部署及简单微调
2024年11月12日,阿里云通义大模型团队正式开源通义千问代码模型全系列,包括6款Qwen2.5-Coder模型,每个规模包含Base和Instruct两个版本。其中32B尺寸的旗舰代码模型在多项基准评测中取得开源最佳成绩,成为全球最强开源代码模型,多项关键能力超越GPT-4o。Qwen2.5-Coder具备强大、多样和实用等优点,通过持续训练,结合源代码、文本代码混合数据及合成数据,显著提升了代码生成、推理和修复等核心任务的性能。此外,该模型还支持多种编程语言,并在人类偏好对齐方面表现出色。本文为周周的奇妙编程原创,阿里云社区首发,未经同意不得转载。
11602 12
|
10天前
|
人工智能 自然语言处理 前端开发
100个降噪蓝牙耳机免费领,用通义灵码从 0 开始打造一个完整APP
打开手机,录制下你完成的代码效果,发布到你的社交媒体,前 100 个@玺哥超Carry、@通义灵码的粉丝,可以免费获得一个降噪蓝牙耳机。
4101 14
|
17天前
|
人工智能 自然语言处理 前端开发
用通义灵码,从 0 开始打造一个完整APP,无需编程经验就可以完成
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。本教程完全免费,而且为大家准备了 100 个降噪蓝牙耳机,送给前 100 个完成的粉丝。获奖的方式非常简单,只要你跟着教程完成第一课的内容就能获得。
6858 10
|
29天前
|
缓存 监控 Linux
Python 实时获取Linux服务器信息
Python 实时获取Linux服务器信息
|
15天前
|
人工智能 自然语言处理 前端开发
什么?!通义千问也可以在线开发应用了?!
阿里巴巴推出的通义千问,是一个超大规模语言模型,旨在高效处理信息和生成创意内容。它不仅能在创意文案、办公助理、学习助手等领域提供丰富交互体验,还支持定制化解决方案。近日,通义千问推出代码模式,基于Qwen2.5-Coder模型,用户即使不懂编程也能用自然语言生成应用,如个人简历、2048小游戏等。该模式通过预置模板和灵活的自定义选项,极大简化了应用开发过程,助力用户快速实现创意。
|
3天前
|
机器学习/深度学习 人工智能 安全
通义千问开源的QwQ模型,一个会思考的AI,百炼邀您第一时间体验
Qwen团队推出新成员QwQ-32B-Preview,专注于增强AI推理能力。通过深入探索和试验,该模型在数学和编程领域展现了卓越的理解力,但仍在学习和完善中。目前,QwQ-32B-Preview已上线阿里云百炼平台,提供免费体验。
|
11天前
|
人工智能 C++ iOS开发
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
764 5

热门文章

最新文章