基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真

简介: 本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。

1.算法运行效果图预览
(完整程序运行后无水印)

优化前:

1.jpeg
2.jpeg
3.jpeg
4.jpeg

优化后:
5.jpeg
6.jpeg
7.jpeg
8.jpeg
9.jpeg
10.jpeg

2.算法运行软件版本
MATLAB2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

```% 训练网络
net = trainNetwork(Pbk_train, Tbk_train, layers, options);

% 对训练集和测试集进行预测
y_pre1 = predict(net, Pbk_train);
y_pre2 = predict(net, Pbk_test);

% 将预测结果转换为类别索引
for i = 1:length(y_pre1)
[~, II] = max(y_pre1(i, :));
ylab1(1, i) = II;
end
for i = 1:length(y_pre2)
[~, II] = max(y_pre2(i, :));
ylab2(1, i) = II;
end

% 计算预测准确率
Acc1 = sum((ylab1 == T_train)) / Num1;
Acc2 = sum((ylab2 == T_test)) / Num2;

% 绘制训练集预测结果
figure
plot(1:Num1, T_train, 'r-s') % 真实值
hold on
plot(1:Num1, ylab1, 'b-o') % 预测值
legend('真实值', '预测值')
title(['训练集预测准确率=', num2str(Acc1)])

% 绘制测试集预测结果
figure
plot(1:Num2, T_test, 'r-s') % 真实值
hold on
plot(1:Num2, ylab2, 'b-o') % 预测值
legend('真实值', '预测值')
title(['测试集预测准确率=', num2str(Acc2)])

% 绘制混淆矩阵
figure
subplot(121);
confusionchart(T_train, ylab1);
title('训练集混淆矩阵');

subplot(122);
confusionchart(T_test, ylab2);
title('测试集混淆矩阵');

% 保存结果
save R1.mat Num1 T_train ylab1 T_test ylab2
175

```

4.算法理论概述
贝叶斯优化是一种全局优化方法,特别适用于黑盒函数优化问题,即目标函数的形式未知或者很难计算梯度的情况。贝叶斯优化通过构建一个代理模型(如高斯过程)来近似目标函数,并利用该代理模型来指导搜索过程。

4.1卷积神经网络(CNN)
在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:
image.png

   CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。

4.2 GRU网络
GRU(Gated Recurrent Unit)是一种先进的循环神经网络(RNN)变体,专门设计用于处理序列数据,如文本、语音、时间序列等。GRU旨在解决传统RNN在处理长序列时可能出现的梯度消失或梯度爆炸问题,并简化LSTM(Long Short-Term Memory)网络的结构,同时保持其捕获长期依赖关系的能力。

  GRU包含一个核心循环单元,该单元在每个时间步t处理输入数据xt并更新隐藏状态ht。其核心创新在于引入了两个门控机制:更新门(Update Gate)和重置门(Reset Gate)。

12.png
13.png

相关文章
|
5天前
|
人工智能 自动驾驶 大数据
预告 | 阿里云邀您参加2024中国生成式AI大会上海站,马上报名
大会以“智能跃进 创造无限”为主题,设置主会场峰会、分会场研讨会及展览区,聚焦大模型、AI Infra等热点议题。阿里云智算集群产品解决方案负责人丛培岩将出席并发表《高性能智算集群设计思考与实践》主题演讲。观众报名现已开放。
|
21天前
|
存储 人工智能 弹性计算
阿里云弹性计算_加速计算专场精华概览 | 2024云栖大会回顾
2024年9月19-21日,2024云栖大会在杭州云栖小镇举行,阿里云智能集团资深技术专家、异构计算产品技术负责人王超等多位产品、技术专家,共同带来了题为《AI Infra的前沿技术与应用实践》的专场session。本次专场重点介绍了阿里云AI Infra 产品架构与技术能力,及用户如何使用阿里云灵骏产品进行AI大模型开发、训练和应用。围绕当下大模型训练和推理的技术难点,专家们分享了如何在阿里云上实现稳定、高效、经济的大模型训练,并通过多个客户案例展示了云上大模型训练的显著优势。
|
25天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
16天前
|
并行计算 前端开发 物联网
全网首发!真·从0到1!万字长文带你入门Qwen2.5-Coder——介绍、体验、本地部署及简单微调
2024年11月12日,阿里云通义大模型团队正式开源通义千问代码模型全系列,包括6款Qwen2.5-Coder模型,每个规模包含Base和Instruct两个版本。其中32B尺寸的旗舰代码模型在多项基准评测中取得开源最佳成绩,成为全球最强开源代码模型,多项关键能力超越GPT-4o。Qwen2.5-Coder具备强大、多样和实用等优点,通过持续训练,结合源代码、文本代码混合数据及合成数据,显著提升了代码生成、推理和修复等核心任务的性能。此外,该模型还支持多种编程语言,并在人类偏好对齐方面表现出色。本文为周周的奇妙编程原创,阿里云社区首发,未经同意不得转载。
11601 12
|
10天前
|
人工智能 自然语言处理 前端开发
100个降噪蓝牙耳机免费领,用通义灵码从 0 开始打造一个完整APP
打开手机,录制下你完成的代码效果,发布到你的社交媒体,前 100 个@玺哥超Carry、@通义灵码的粉丝,可以免费获得一个降噪蓝牙耳机。
4097 14
|
17天前
|
人工智能 自然语言处理 前端开发
用通义灵码,从 0 开始打造一个完整APP,无需编程经验就可以完成
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。本教程完全免费,而且为大家准备了 100 个降噪蓝牙耳机,送给前 100 个完成的粉丝。获奖的方式非常简单,只要你跟着教程完成第一课的内容就能获得。
6856 10
|
29天前
|
缓存 监控 Linux
Python 实时获取Linux服务器信息
Python 实时获取Linux服务器信息
|
15天前
|
人工智能 自然语言处理 前端开发
什么?!通义千问也可以在线开发应用了?!
阿里巴巴推出的通义千问,是一个超大规模语言模型,旨在高效处理信息和生成创意内容。它不仅能在创意文案、办公助理、学习助手等领域提供丰富交互体验,还支持定制化解决方案。近日,通义千问推出代码模式,基于Qwen2.5-Coder模型,用户即使不懂编程也能用自然语言生成应用,如个人简历、2048小游戏等。该模式通过预置模板和灵活的自定义选项,极大简化了应用开发过程,助力用户快速实现创意。
|
3天前
|
机器学习/深度学习 人工智能 安全
通义千问开源的QwQ模型,一个会思考的AI,百炼邀您第一时间体验
Qwen团队推出新成员QwQ-32B-Preview,专注于增强AI推理能力。通过深入探索和试验,该模型在数学和编程领域展现了卓越的理解力,但仍在学习和完善中。目前,QwQ-32B-Preview已上线阿里云百炼平台,提供免费体验。
|
11天前
|
人工智能 C++ iOS开发
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
762 5