Matplotlib 散点图

简介: Matplotlib 散点图

我们可以使用 pyplot 中的 scatter() 方法来绘制散点图。

scatter() 方法语法格式如下:

matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs)

参数说明:

x,y:长度相同的数组,也就是我们即将绘制散点图的数据点,输入数据。

s:点的大小,默认 20,也可以是个数组,数组每个参数为对应点的大小。

c:点的颜色,默认蓝色 'b',也可以是个 RGB 或 RGBA 二维行数组。

marker:点的样式,默认小圆圈 'o'。

cmap:Colormap,默认 None,标量或者是一个 colormap 的名字,只有 c 是一个浮点数数组的时才使用。如果没有申明就是 image.cmap。

norm:Normalize,默认 None,数据亮度在 0-1 之间,只有 c 是一个浮点数的数组的时才使用。

vmin,vmax::亮度设置,在 norm 参数存在时会忽略。

alpha::透明度设置,0-1 之间,默认 None,即不透明。

linewidths::标记点的长度。

edgecolors::颜色或颜色序列,默认为 'face',可选值有 'face', 'none', None。

plotnonfinite::布尔值,设置是否使用非限定的 c ( inf, -inf 或 nan) 绘制点。

**kwargs::其他参数。

以下实例 scatter() 函数接收长度相同的数组参数,一个用于 x 轴的值,另一个用于 y 轴上的值:

实例

import matplotlib.pyplot as plt

import numpy as np


x = np.array([1, 2, 3, 4, 5, 6, 7, 8])

y = np.array([1, 4, 9, 16, 7, 11, 23, 18])


plt.scatter(x, y)

plt.show()

显示结果如下:

设置图标大小:

实例

import matplotlib.pyplot as plt

import numpy as np


x = np.array([1, 2, 3, 4, 5, 6, 7, 8])

y = np.array([1, 4, 9, 16, 7, 11, 23, 18])

sizes = np.array([20,50,100,200,500,1000,60,90])

plt.scatter(x, y, s=sizes)

plt.show()

显示结果如下:

自定义点的颜色:

实例

import matplotlib.pyplot as plt

import numpy as np


x = np.array([1, 2, 3, 4, 5, 6, 7, 8])

y = np.array([1, 4, 9, 16, 7, 11, 23, 18])

colors = np.array(["red","green","black","orange","purple","beige","cyan","magenta"])


plt.scatter(x, y, c=colors)

plt.show()

显示结果如下:

设置两组散点图:

实例

import matplotlib.pyplot as plt

import numpy as np


x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])

y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])

plt.scatter(x, y, color = 'hotpink')


x = np.array([2,2,8,1,15,8,12,9,7,3,11,4,7,14,12])

y = np.array([100,105,84,105,90,99,90,95,94,100,79,112,91,80,85])

plt.scatter(x, y, color = '#88c999')


plt.show()

显示结果如下:

使用随机数来设置散点图:

实例

import numpy as np

import matplotlib.pyplot as plt


# 随机数生成器的种子

np.random.seed(19680801)



N = 50

x = np.random.rand(N)

y = np.random.rand(N)

colors = np.random.rand(N)

area = (30 * np.random.rand(N))**2  # 0 to 15 point radii


plt.scatter(x, y, s=area, c=colors, alpha=0.5) # 设置颜色及透明度


plt.title("RUNOOB Scatter Test") # 设置标题


plt.show()

显示结果如下:

颜色条 Colormap

Matplotlib 模块提供了很多可用的颜色条。

颜色条就像一个颜色列表,其中每种颜色都有一个范围从 0 到 100 的值。

下面是一个颜色条的例子:

设置颜色条需要使用 cmap 参数,默认值为 'viridis',之后颜色值设置为 0 到 100 的数组。

实例

import matplotlib.pyplot as plt

import numpy as np


x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])

y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])

colors = np.array([0, 10, 20, 30, 40, 45, 50, 55, 60, 70, 80, 90, 100])


plt.scatter(x, y, c=colors, cmap='viridis')


plt.show()

显示结果如下:

如果要显示颜色条,需要使用 plt.colorbar() 方法:

实例

import matplotlib.pyplot as plt

import numpy as np


x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])

y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])

colors = np.array([0, 10, 20, 30, 40, 45, 50, 55, 60, 70, 80, 90, 100])


plt.scatter(x, y, c=colors, cmap='viridis')


plt.colorbar()


plt.show()

显示结果如下:

换个颜色条参数, cmap 设置为 afmhot_r

实例

import matplotlib.pyplot as plt

import numpy as np


x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])

y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])

colors = np.array([0, 10, 20, 30, 40, 45, 50, 55, 60, 70, 80, 90, 100])


plt.scatter(x, y, c=colors, cmap='afmhot_r')

plt.colorbar()

plt.show()

显示结果如下:

颜色条参数值可以是以下值:

颜色名称   保留关键字
Accent   Accent_r
Blues   Blues_r
BrBG   BrBG_r
BuGn   BuGn_r
BuPu   BuPu_r
CMRmap   CMRmap_r
Dark2   Dark2_r
GnBu   GnBu_r
Greens   Greens_r
Greys   Greys_r
OrRd   OrRd_r
Oranges   Oranges_r
PRGn   PRGn_r
Paired   Paired_r
Pastel1   Pastel1_r
Pastel2   Pastel2_r
PiYG   PiYG_r
PuBu   PuBu_r
PuBuGn   PuBuGn_r
PuOr   PuOr_r
PuRd   PuRd_r
Purples   Purples_r
RdBu   RdBu_r
RdGy   RdGy_r
RdPu   RdPu_r
RdYlBu   RdYlBu_r
RdYlGn   RdYlGn_r
Reds   Reds_r
Set1   Set1_r
Set2   Set2_r
Set3   Set3_r
Spectral   Spectral_r
Wistia   Wistia_r
YlGn   YlGn_r
YlGnBu   YlGnBu_r
YlOrBr   YlOrBr_r
YlOrRd   YlOrRd_r
afmhot   afmhot_r
autumn   autumn_r
binary   binary_r
bone   bone_r
brg   brg_r
bwr   bwr_r
cividis   cividis_r
cool   cool_r
coolwarm   coolwarm_r
copper   copper_r
cubehelix   cubehelix_r
flag   flag_r
gist_earth   gist_earth_r
gist_gray   gist_gray_r
gist_heat   gist_heat_r
gist_ncar   gist_ncar_r
gist_rainbow   gist_rainbow_r
gist_stern   gist_stern_r
gist_yarg   gist_yarg_r
gnuplot   gnuplot_r
gnuplot2   gnuplot2_r
gray   gray_r
hot   hot_r
hsv   hsv_r
inferno   inferno_r
jet   jet_r
magma   magma_r
nipy_spectral   nipy_spectral_r
ocean   ocean_r
pink   pink_r
plasma   plasma_r
prism   prism_r
rainbow   rainbow_r
seismic   seismic_r
spring   spring_r
summer   summer_r
tab10   tab10_r
tab20   tab20_r
tab20b   tab20b_r
tab20c   tab20c_r
terrain   terrain_r
twilight   twilight_r
twilight_shifted   twilight_shifted_r
viridis   viridis_r
winter   winter_r

目录
相关文章
|
4天前
|
人工智能 自动驾驶 大数据
预告 | 阿里云邀您参加2024中国生成式AI大会上海站,马上报名
大会以“智能跃进 创造无限”为主题,设置主会场峰会、分会场研讨会及展览区,聚焦大模型、AI Infra等热点议题。阿里云智算集群产品解决方案负责人丛培岩将出席并发表《高性能智算集群设计思考与实践》主题演讲。观众报名现已开放。
|
21天前
|
存储 人工智能 弹性计算
阿里云弹性计算_加速计算专场精华概览 | 2024云栖大会回顾
2024年9月19-21日,2024云栖大会在杭州云栖小镇举行,阿里云智能集团资深技术专家、异构计算产品技术负责人王超等多位产品、技术专家,共同带来了题为《AI Infra的前沿技术与应用实践》的专场session。本次专场重点介绍了阿里云AI Infra 产品架构与技术能力,及用户如何使用阿里云灵骏产品进行AI大模型开发、训练和应用。围绕当下大模型训练和推理的技术难点,专家们分享了如何在阿里云上实现稳定、高效、经济的大模型训练,并通过多个客户案例展示了云上大模型训练的显著优势。
|
24天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
16天前
|
并行计算 前端开发 物联网
全网首发!真·从0到1!万字长文带你入门Qwen2.5-Coder——介绍、体验、本地部署及简单微调
2024年11月12日,阿里云通义大模型团队正式开源通义千问代码模型全系列,包括6款Qwen2.5-Coder模型,每个规模包含Base和Instruct两个版本。其中32B尺寸的旗舰代码模型在多项基准评测中取得开源最佳成绩,成为全球最强开源代码模型,多项关键能力超越GPT-4o。Qwen2.5-Coder具备强大、多样和实用等优点,通过持续训练,结合源代码、文本代码混合数据及合成数据,显著提升了代码生成、推理和修复等核心任务的性能。此外,该模型还支持多种编程语言,并在人类偏好对齐方面表现出色。本文为周周的奇妙编程原创,阿里云社区首发,未经同意不得转载。
11571 10
|
9天前
|
人工智能 自然语言处理 前端开发
100个降噪蓝牙耳机免费领,用通义灵码从 0 开始打造一个完整APP
打开手机,录制下你完成的代码效果,发布到你的社交媒体,前 100 个@玺哥超Carry、@通义灵码的粉丝,可以免费获得一个降噪蓝牙耳机。
4048 13
|
16天前
|
人工智能 自然语言处理 前端开发
用通义灵码,从 0 开始打造一个完整APP,无需编程经验就可以完成
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。本教程完全免费,而且为大家准备了 100 个降噪蓝牙耳机,送给前 100 个完成的粉丝。获奖的方式非常简单,只要你跟着教程完成第一课的内容就能获得。
6759 10
|
28天前
|
缓存 监控 Linux
Python 实时获取Linux服务器信息
Python 实时获取Linux服务器信息
|
14天前
|
人工智能 自然语言处理 前端开发
什么?!通义千问也可以在线开发应用了?!
阿里巴巴推出的通义千问,是一个超大规模语言模型,旨在高效处理信息和生成创意内容。它不仅能在创意文案、办公助理、学习助手等领域提供丰富交互体验,还支持定制化解决方案。近日,通义千问推出代码模式,基于Qwen2.5-Coder模型,用户即使不懂编程也能用自然语言生成应用,如个人简历、2048小游戏等。该模式通过预置模板和灵活的自定义选项,极大简化了应用开发过程,助力用户快速实现创意。
|
2天前
|
机器学习/深度学习 人工智能 安全
通义千问开源的QwQ模型,一个会思考的AI,百炼邀您第一时间体验
Qwen团队推出新成员QwQ-32B-Preview,专注于增强AI推理能力。通过深入探索和试验,该模型在数学和编程领域展现了卓越的理解力,但仍在学习和完善中。目前,QwQ-32B-Preview已上线阿里云百炼平台,提供免费体验。
|
10天前
|
人工智能 C++ iOS开发
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
722 5