【AI系统】AI的领域、场景与行业应用

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 本文概述了AI的历史、现状及发展趋势,涵盖AI系统的初步设计原则,并深入探讨了AI在计算机视觉、自然语言处理和音频处理三个领域的具体应用。同时,文中还介绍了AI在金融、医疗、教育、互联网及自动驾驶等行业中的广泛应用,强调了AI基础设施的重要性及其对企业竞争力的影响。通过阅读本文,读者不仅可以获得系统的AI知识,还能激发对AI系统研究的兴趣,掌握相关的设计原则与方法。

AI 的历史与现状

本文将介绍 AI 的由来、现状和趋势,让大家能够了解 AI 应用的由来与趋势,为后面理解 AI 系统的设计形成初步的基础。在后面文章介绍的人工智能系统(AI System)奠定基础,值得注意的是,这些系统设计原则大部分也适合于机器学习系统(ML System)。

因为系统本身是随着上层应用的发展而不断演化的,从人工智能本身的发展脉络和趋势可以观察到:目前模型不断由小模型到大模型分布式训练演进,由单一的模型训练方式演化出针对特定应用的深度强化学习的训练方式,企业级神经网络模型生产由独占使用硬件资源到云上多租户共享 AI 集群资源进行模型训练。

看 AI 算法模型结构本身的发展,训练与部署需求使得模型结构快速演变;执行与部署流程上,资源管理变得越来越复杂,给 AI 系统的设计和开发带来越来越大的挑战的同时,也充满了新的系统设计,研究与工程实践的机遇。

希望在后面的文章中,不仅能给读者带来较为系统化的 AI 知识,也希望能激发开发者对 AI 系统研究的兴趣,掌握相应的 AI 系统研究方法与设计原则,深入地去了解 AI 系统发展的趋势与脉络。

AI 的领域应用

人工智能正在日益渗透到所有的技术领域,而深度学习是目前人工智能中最活跃的分支。最近几年,深度学习取得了许多重要进展,其中一些因为事件跟大众关系密切而引人瞩目,而有的虽然低调但意义重大。深度学习从业人员应该保持足够的嗅觉,这个领域正在发生很多事情,必须要跑的足够的快才能跟上时代步伐。深度学习在计算机视觉 CV、自然语言处理 NLP、语音识别 Audio 这三大领域方向中都取得了显著的成果。

01Present01.png

CV 领域应用

深度学习因其可信度而得到广泛认可。计算机视觉,尤其是图像识别,是深度学习能力的一些最早重要演示的主题,最近在人脸识别和物体检测方面。

  • 物体检测与跟踪:深度学习算法已用于各种应用,例如自动驾驶汽车、无人机和安全摄像头的实时检测和跟踪对象。例如,自动驾驶汽车使用深度学习来识别和跟踪周围环境中的车辆、行人和其他物体。同样,配备深度学习算法的无人机可以实时检测和跟踪感兴趣的物体,例如野生动物或车辆。

  • 图像与视频识别:神经网络模型可以非常准确地识别和分类图像和视频,从而支持图像搜索引擎、内容审核和推荐系统等应用。例如,谷歌和 Bing 等搜索引擎使用深度学习算法,根据图像查询提供准确且相关的搜索结果。同样,Meta 和 YouTube 等内容审核平台使用深度学习来自动标记和删除不当内容。

  • 面部识别:深度学习算法可以高精度识别和匹配人脸,实现安全访问控制、监控甚至个性化营销等应用。例如,出于安全目的,机场和政府大楼使用面部识别来筛查乘客和员工。同样,零售商使用面部识别来分析客户行为和偏好,并提供个性化的购物体验。

如下图所示,深度学习在 CV 领域已经从左边的实现图片分类、目标检测和物体分割,逐渐过渡到右边实现二维甚至是三维的图片生成。

01Present02.png

NLP 领域应用

深度学习与 NLP 有着密切的联系。深度学习是一种机器学习方法,它通过建立多层神经网络来模拟人脑的学习过程。NLP 则是一种人工智能技术,它研究如何让计算机更好地理解和处理自然语言。NLP 的基本概念主要包括文本处理和自然语言理解。

  • 文本处理:对文本数据进行的一系列处理过程,包括分词、词性标注、句法分析和语义分析等。这些处理过程可以帮助计算机更好地理解和处理自然语言文本数据。自然语言理解则是让计算机能够理解自然语言文本数据的含义和上下文信息,从而能够做出相应的响应和决策。

  • 词向量表示:词向量表示是将词语转化为计算机能够处理的数据格式。深度学习可以通过建立神经网络模型,利用大量语料库进行训练,从而学习到词向量表示。这种表示方式可以更好地捕捉词语的语义信息,为后续的自然语言处理任务提供更好的基础。

  • 文本分类与情感分析:深度学习可以通过建立卷积神经网络(CNN)或循环神经网络(RNN)等模型,对文本进行分类或情感分析。例如,利用 CNN 模型对文本进行分类,可以识别文本所属的类别;利用 RNN 模型进行情感分析,可以判断文本表达的情感倾向。

  • 机器翻译:机器翻译是 NLP 领域的一个重要应用,它是将一种自然语言文本自动翻译成另一种自然语言文本的过程。深度学习可以通过建立神经网络模型,利用大量双语语料库进行训练,从而实现高质量的机器翻译。

如下图所示,在 NLP 领域中最新的进展已经能够使用语言大模型 LLM 实现人机对话、摘要自动生成和信息检索等功能。而近期的大模型应用则是风起云涌,出现了大量如 KIMI 做底层 LO 大模型的公司及其对应推出的应用。

01Present03.png

Audio 领域应用

随着深度学习技术的快速发展,智能音频处理作为其中的一个重要应用领域,利用深度学习技术可以实现音频信号的分析、识别和合成等任务。深度学习技术在智能音频处理中的应用与创新为音频信号的分析、识别和合成等任务提供了强大的工具和方法。通过深度学习技术,可以实现音频信号的自动处理和优化,提高音频处理的效率和准确性。未来,我们可以进一步研究和探索深度学习技术在智能音频处理中的新应用和创新,以满足不断增长的音频处理需求。

  • 音频信号分析:深度学习技术可以用于音频信号的分析,如音频分类、音频分割和音频降噪等。通过训练神经网络模型,可以提取音频信号的特征,并对音频进行分类或分割。此外,深度学习技术还可以应用于音频降噪,通过学习噪声模型和信号模型,实现对噪声的自动去除。

  • 语音识别:深度学习技术在语音识别领域取得了重大突破。通过使用神经网络模型,可以将语音信号转化为文本信息。神经网络模型可以自动学习语音信号的特征,并通过大规模的训练数据提高识别准确率。语音识别技术的应用包括语音助手、语音翻译和语音控制等。

  • 音频合成:深度学习技术可以用于音频合成,如语音合成和音乐合成等。通过训练神经网络模型,可以生成逼真的语音合成结果。此外,深度学习技术还可以用于音乐合成,通过学习音乐的模式和结构,生成新的音乐作品。

  • 端到端的音频处理:传统的音频处理方法通常需要多个步骤和模块,而深度学习技术可以实现端到端的音频处理。通过训练端到端的神经网络模型,可以直接从原始音频信号中提取特征并完成音频处理任务,简化了处理流程并提高了效率。

  • 跨模态音频处理:深度学习技术可以实现跨模态的音频处理,将音频信号与其他模态的信息进行融合和处理。例如,可以将音频信号与图像或文本信息进行联合处理,实现更加丰富和准确的音频分析和合成。

如下图所示,现在已经有越来越多的 AI 技术应用到 Audio 领域,如实现音频根据提供的内容自动生成等辅助传统的音频和视频制作软件提供更加人性化的功能以外,还可以实现音频自动对齐、音频分类等众多提高生产力的应用。

01Present04.png

AI 场景与行业应用

随着人工智能技术的发展与推广,人工智能逐渐在互联网、制造业、医疗、金融等不同行业和场景涌现大范围的应用。

  • 金融行业:金融行业一直是人工智能技术的重要应用场景。通过深度学习技术,可以实现对客户信用评估、风险管理、反欺诈等方面的智能化分析。目前,我国多家金融机构已经在尝试将 AI 应用于金融行业,如中国银行、中国平安、招商银行等。这些金融机构通过 AI 实现对客户数据的快速处理和分析,提高业务效率,降低风险。

  • 医疗行业:医疗行业一直是人工智能技术的重要应用场景。通过深度学习技术,可以实现对疾病诊断、药物研发、病历管理等方面的智能化分析。目前,我国多家医疗机构已经在尝试将 AI 模型应用于医疗行业,如清华大学、北京大学、复旦大学等。这些医疗机构通过 AI 实现对病历数据的快速处理和分析,提高疾病诊断准确率,降低药物研发成本。

  • 教育行业:教育行业一直是人工智能技术的重要应用场景。通过深度学习技术,可以实现对学生的个性化教育、智能辅导、智能评估等方面的智能化分析。通过 AI 的应用实现对学生的个性化教育,提高学习效果,降低教育成本。

  • 互联网行业:谷歌、百度、微软必应(Bing)等公司通过人工智能技术进行更好的文本向量化,提升检索质量,同时人工智能进行点击率预测,获取更高的利润。

  • 自动驾驶:通过深度学习,自动驾驶车辆能够更准确地识别道路上的物体,更安全地执行驾驶决策,更稳定地控制车辆的行驶。如通过物体检测模型能够进行更好的路标检测,道路线检测进而增强自动驾驶方案。同时,深度学习还能够提高自动驾驶车辆的适应性和智能化水平,使其能够更好地应对复杂的交通环境和多种驾驶场景。在未来,随着自动驾驶技术的不断发展,深度学习将在其中发挥越来越重要的作用,推动自动驾驶技术的进步和应用。

01Present05.png

综上所述,可以看到也是这些有应用与部署人工智能技术的公司都会在人工智能基础设施和系统上投入和研发,进而通过提升神经网络模型生产效率,更快的获取效果更好的模型进而获取领先优势,然后再通过业务场景反哺,获取更多的数据和加大研发投入,驱动人工智能系统与工具链的创新与发展。

如果您想了解更多AI知识,与AI专业人士交流,请立即访问昇腾社区官方网站https://www.hiascend.com/ 或者深入研读《AI系统:原理与架构》一书,这里汇聚了海量的AI学习资源和实践课程,为您的AI技术成长提供强劲动力。不仅如此,您还有机会投身于全国昇腾AI创新大赛和昇腾AI开发者创享日等盛事,发现AI世界的无限奥秘~

目录
相关文章
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
AigcPanel:开源的 AI 虚拟数字人系统,一键安装开箱即用,支持视频合成、声音合成和声音克隆
AigcPanel 是一款开源的 AI 虚拟数字人系统,支持视频合成、声音克隆等功能,适用于影视制作、虚拟主播、教育培训等多种场景。
32 12
AigcPanel:开源的 AI 虚拟数字人系统,一键安装开箱即用,支持视频合成、声音合成和声音克隆
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
39 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
2天前
|
存储 人工智能 开发框架
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
Eliza 是一个开源的多代理模拟框架,支持多平台连接、多模型集成,能够快速构建智能、高效的AI系统。
31 8
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
|
1天前
|
机器学习/深度学习 人工智能 监控
AI在交通管理系统中的应用
AI在交通管理系统中的应用
31 23
|
3天前
|
人工智能 API
新年课程开启:手把手教学,0基础5次课程学会搭建无限拓展的AI应用
你是否想过自己也能动手搭建一个AI应用?现在,这个目标触手可及!
|
2天前
|
人工智能 运维 监控
云卓越架构:企业稳定性架构体系和AI业务场景探秘
本次分享由阿里云智能集团公共云技术服务部上海零售技术服务高级经理路志华主讲,主题为“云卓越架构:企业稳定性架构体系和AI业务场景探秘”。内容涵盖四个部分:1) 稳定性架构设计,强调高可用、可扩展性、安全性和可维护性;2) 稳定性保障体系和应急体系的建立,确保快速响应和恢复;3) 重大活动时的稳定重宝策略,如大促或新业务上线;4) AI在企业中的应用场景,包括智能编码、知识库问答、创意广告生成等。通过这些内容,帮助企业在云计算环境中构建更加稳定和高效的架构,并探索AI技术带来的创新机会。
|
2天前
|
人工智能 运维 API
PAI企业级能力升级:应用系统构建、高效资源管理、AI治理
PAI平台针对企业用户在AI应用中的复杂需求,提供了全面的企业级能力。涵盖权限管理、资源分配、任务调度与资产管理等模块,确保高效利用AI资源。通过API和SDK支持定制化开发,满足不同企业的特殊需求。典型案例中,某顶尖高校基于PAI构建了融合AI与HPC的科研计算平台,实现了作业、运营及运维三大中心的高效管理,成功服务于校内外多个场景。
|
机器学习/深度学习 人工智能 算法
|
8天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
138 97
|
13天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营