前言:
C++中的set是标准模板库(STL)中的一种关联容器,它存储了一组唯一的元素,并且这些元素是按照特定的顺序(默认是升序)进行排序的
set
的介绍C++中的set是标准模板库(STL)中的一种关联容器,它存储了一组唯一的元素,并且这些元素是按照特定顺序(默认是升序)排序的。set内部使用红黑树这种平衡二叉搜索树来组织元素,这使得set能够提供对数时间复杂度的查找、插入和删除操作。
set
的特点
- 唯一性:set中的元素是唯一的,插入重复元素时,新元素不会被添加到容器中。
- 自动排序:set会自动对元素进行排序,不需要用户手动维护元素的顺序。
- 高效的查找、插入和删除操作:由于set内部通常使用红黑树实现,这些操作的时间复杂度为对数级别(O(log n))。
- 迭代器稳定性:在set中插入或删除元素不会使现有的迭代器失效,除了指向被删除元素的迭代器
set
的实现(set的底层是红黑树)
set的结构
- 由于set和map是公用一棵树,set是K 、map是KV的结构,为了适应map的结构,set做出一定的改变
- 内部类是为了取到set内所存储的数据
- 在set的map中 set所存储的是key而map是pair
template<class K>
class set
{
struct setofkey
{
const K& operator()(const K& key)
{
return key;
}
};
public:
private:
RBTree <K, K, setofkey> _t;
};
set的插入
这是红黑树的底层插入,大体上和红黑树是一样的
寻找插入位置,进行插入。
调整红黑树,保持红黑树的结构
第一行的iterator是普通迭代器,而return返回的是const迭代器。在迭代器的封装的时候就要写iterator的构造函数
pair<iterator,bool> insert(const K& key) { pair<typename RBTree <K, K, setofkey>::iterator, bool> ret = _t.insert(key); return pair<iterator, bool>(ret.first, ret.second); }
pair<iterator,bool> insert(const T& data)
{
if (_root == nullptr)
{
_root = new Node(data);
_root->_col = BLACK;
return make_pair(iterator(_root),true);
}
Node* parent = nullptr;
Node* cur = _root;
keyofT kot;
while (cur)
{
if (kot(data) > kot(cur->_data))
{
parent = cur;
cur = cur->_right;
}
else if (kot(data) < kot(cur->_data))
{
parent = cur;
cur = cur->_left;
}
else
{
return make_pair(iterator(cur), false);
}
}
cur = new Node(data);
Node* newnode = cur;
cur->_col = RED;
if (kot(data) < kot(parent->_data))
{
parent->_left = cur;
}
else
{
parent->_right = cur;
}
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandparent = parent->_parent;
if (parent == grandparent->_left)
{
Node* uncle = grandparent->_right;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandparent->_col = RED;
cur = grandparent;
parent = cur->_parent;
}
else//uncle is not or black
{
if (cur == parent->_left)
{
RotateR(grandparent);
grandparent->_col = RED;
parent->_col = BLACK;
}
else
{
RotateL(parent);
RotateR(grandparent);
grandparent->_col = RED;
cur->_col = BLACK;
}
break;
}
}
else//parent == grandparent->_right
{
Node* uncle = grandparent->_left;
if (uncle && uncle->_col == RED)
{
grandparent->_col = RED;
parent->_col = uncle->_col = BLACK;
cur = grandparent;
parent = cur->_parent;
}
else
{
if (cur == parent->_right)
{
RotateL(grandparent);
parent->_col = BLACK;
grandparent->_col = RED;
}
else
{
RotateR(parent);
RotateL(grandparent);
cur->_col = BLACK;
grandparent->_col = RED;
}
}
break;
}
}
_root->_col = BLACK;
return make_pair(iterator(newnode),true );
}
set的查找
- 红黑树的查找类似于,AVL的查找。本质上是一样的。
Node* find(const T& data)
{
keyofT kot;
Node* cur = _root;
while (cur)
{
if (kot(data) > kot(cur->_data))
{
cur = cur->_right;
}
else if (kot(data) < kot(cur->_data))
{
cur = cur->_left;
}
else
{
return cur;
}
}
return nullptr;
}
set的迭代器
迭代器的概念
迭代器是一种抽象数据类型,它提供了一种方法来遍历容器中的元素,就像指针遍历数组一样。C++中的迭代器分为五种:输入迭代器、输出迭代器、前向迭代器、双向迭代器和随机访问迭代器。set的迭代器是双向迭代器,这意味着它们可以向前和向后遍历元素
迭代器的封装
- set迭代器类似于list的迭代器
- 主要区别在于
++
和--
- Ptr是T*,Ref是T&,设置这么多的模板参数是为适配出const的迭代器
- 注意的是需要Iterator的构造函数,因为set的迭代器都是const的迭代器。
template<class T,class Ptr,class Ref>
struct TreeIterator
{
typedef RBTreeNode<T> Node;
typedef TreeIterator<T,Ptr,Ref> self;
typedef TreeIterator<T, T*, T&> Iterator;
Node* _node;
TreeIterator(Node* node)
:_node(node)
{
}
TreeIterator(const Iterator& it)
:_node(it._node)
{
}
Ref operator* ()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
bool operator != (const self & s) const
{
return _node!= s._node;
}
bool operator== (const self & s) const
{
return _node == s._node;
}
};
迭代器的核心
set的迭代器在内部维护了指向树中节点的指针。由于set是有序的,迭代器在递增或递减时会沿着树的左子树或右子树进行遍历。迭代器的operator++(递增)和operator--(递减)操作会更新迭代器所指向的节点,移动到下一个或上一个有序元素。
前置++
- 前置++ 的本质上就是中序的遍历,左子树-根-右子树
- 如果右子树存在就去右子树的最左节点
- _node 不是右节点那么,证明子树的左右节点均访问完成,需要访问祖父的节点
self& operator++()
{
if (_node->_right)
{
Node* cur = _node->_right;
while (cur->_left)
{
cur = cur->_left;
}
_node = cur;
}
else
{
Node* cur = _node;
Node* parent = _node->_parent;
while (parent)
{
if (cur == parent->_left)
{
break;
}
else
{
cur = cur->_parent;
parent = parent->_parent;
}
}
_node = parent;
}
return *this;
}
前置- -
- 前置-- 是前置++的镜像的一个顺序的访问,右子树-根-左子树
- 方法是类似于前置++
self& operator--()
{
if (_node->_left)
{
Node* cur = _node->_right;
while (cur->_left)
{
cur = cur->_right;
}
_node = cur;
}
else
{
Node* cur = _node;
Node* parent = _node->_parent;
while (parent && parent->_left)
{
cur = cur->_parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
迭代器
- 前面是将迭代器封装,因为正常的++或者--已不可以支持自定义类型的加减
- 在红黑树的类中实现,在实现set时候只需要调用,在这里面可以认为红黑树是容器的适配器
typedef TreeIterator<T, T*, T&> iterator;
typedef TreeIterator<T,const T*,const T&> const_iterator;
iterator begin()
{
Node* leftmin = _root;
while (leftmin->_left)
{
leftmin = leftmin->_left;
}
return iterator(leftmin);
}
iterator end()
{
return iterator(nullptr);
}
const_iterator begin()const
{
Node* leftmin = _root;
while (leftmin->_left)
{
leftmin = leftmin->_left;
}
return const_iterator(leftmin);
}
const_iterator end()const
{
return const_iterator(nullptr);
}
源码
set
#pragma once
#include"RBTree.h"
#include<iostream>
using namespace std;
namespace Set
{
template<class K>
class set
{
struct setofkey
{
const K& operator()(const K& key)
{
return key;
}
};
public:
typedef typename RBTree<K, K, setofkey>::const_iterator iterator;
typedef typename RBTree<K, K, setofkey>::const_iterator const_iterator;
iterator begin()const
{
return _t.begin();
}
iterator end()const
{
return _t.end();
}
pair<iterator,bool> insert(const K& key)
{
pair<typename RBTree <K, K, setofkey>::iterator, bool> ret = _t.insert(key);
return pair<iterator, bool>(ret.first, ret.second);
}
private:
RBTree <K, K, setofkey> _t;
};
}
红黑树
enum Colour
{
RED,
BLACK
};
template< class T>
class RBTreeNode
{
public:
RBTreeNode<T>* _left;
RBTreeNode<T>* _right;
RBTreeNode<T>* _parent;
T _data;
Colour _col;
RBTreeNode(const T& data)
:_left(nullptr), _right(nullptr), _parent(nullptr), _col(RED), _data(data)
{
}
};
template<class T,class Ptr,class Ref>
struct TreeIterator
{
typedef RBTreeNode<T> Node;
typedef TreeIterator<T,Ptr,Ref> self;
typedef TreeIterator<T, T*, T&> Iterator;
Node* _node;
TreeIterator(Node* node)
:_node(node)
{
}
TreeIterator(const Iterator& it)
:_node(it._node)
{
}
Ref operator* ()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
bool operator != (const self & s) const
{
return _node!= s._node;
}
bool operator== (const self & s) const
{
return _node == s._node;
}
self& operator--()
{
if (_node->_left)
{
Node* cur = _node->_right;
while (cur->_left)
{
cur = cur->_right;
}
_node = cur;
}
else
{
Node* cur = _node;
Node* parent = _node->_parent;
while (parent && parent->_left)
{
cur = cur->_parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
self& operator++()
{
if (_node->_right)
{
Node* cur = _node->_right;
while (cur->_left)
{
cur = cur->_left;
}
_node = cur;
}
else
{
Node* cur = _node;
Node* parent = _node->_parent;
while (parent)
{
if (cur == parent->_left)
{
break;
}
else
{
cur = cur->_parent;
parent = parent->_parent;
}
}
_node = parent;
}
return *this;
}
};
template<class K, class T,class keyofT>
class RBTree
{
typedef RBTreeNode<T> Node;
public:
typedef TreeIterator<T, T*, T&> iterator;
typedef TreeIterator<T,const T*,const T&> const_iterator;
iterator begin()
{
Node* leftmin = _root;
while (leftmin->_left)
{
leftmin = leftmin->_left;
}
return iterator(leftmin);
}
iterator end()
{
return iterator(nullptr);
}
const_iterator begin()const
{
Node* leftmin = _root;
while (leftmin->_left)
{
leftmin = leftmin->_left;
}
return const_iterator(leftmin);
}
const_iterator end()const
{
return const_iterator(nullptr);
}
Node* find(const T& data)
{
keyofT kot;
Node* cur = _root;
while (cur)
{
if (kot(data) > kot(cur->_data))
{
cur = cur->_right;
}
else if (kot(data) < kot(cur->_data))
{
cur = cur->_left;
}
else
{
return cur;
}
}
return nullptr;
}
pair<iterator,bool> insert(const T& data)
{
if (_root == nullptr)
{
_root = new Node(data);
_root->_col = BLACK;
return make_pair(iterator(_root),true);
}
Node* parent = nullptr;
Node* cur = _root;
keyofT kot;
while (cur)
{
if (kot(data) > kot(cur->_data))
{
parent = cur;
cur = cur->_right;
}
else if (kot(data) < kot(cur->_data))
{
parent = cur;
cur = cur->_left;
}
else
{
return make_pair(iterator(cur), false);
}
}
cur = new Node(data);
Node* newnode = cur;
cur->_col = RED;
if (kot(data) < kot(parent->_data))
{
parent->_left = cur;
}
else
{
parent->_right = cur;
}
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandparent = parent->_parent;
if (parent == grandparent->_left)
{
Node* uncle = grandparent->_right;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandparent->_col = RED;
cur = grandparent;
parent = cur->_parent;
}
else//uncle is not or black
{
if (cur == parent->_left)
{
RotateR(grandparent);
grandparent->_col = RED;
parent->_col = BLACK;
}
else
{
RotateL(parent);
RotateR(grandparent);
grandparent->_col = RED;
cur->_col = BLACK;
}
break;
}
}
else//parent == grandparent->_right
{
Node* uncle = grandparent->_left;
if (uncle && uncle->_col == RED)
{
grandparent->_col = RED;
parent->_col = uncle->_col = BLACK;
cur = grandparent;
parent = cur->_parent;
}
else
{
if (cur == parent->_right)
{
RotateL(grandparent);
parent->_col = BLACK;
grandparent->_col = RED;
}
else
{
RotateR(parent);
RotateL(grandparent);
cur->_col = BLACK;
grandparent->_col = RED;
}
}
break;
}
}
_root->_col = BLACK;
return make_pair(iterator(newnode),true );
}
void RotateR(Node* parent)
{
Node* cur = parent->_left;
Node* curright = cur->_right;
parent->_left = curright;
if (curright)
{
curright->_parent = parent;
}
cur->_right = parent;
Node* ppnode = parent->_parent;
parent->_parent = cur;
if (ppnode == nullptr)
{
_root = cur;
cur->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = cur;
}
else
{
ppnode->_right = cur;
}
cur->_parent = ppnode;
}
}
void RotateL(Node* parent)
{
Node* cur = parent->_right;
Node* curleft = cur->_left;
parent->_right = curleft;
if (curleft)
{
curleft->_parent = parent;
}
cur->_left = parent;
Node* ppnode = parent->_parent;
parent->_parent = cur;
if (parent == _root)
{
_root = cur;
cur->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = cur;
}
else
{
ppnode->_right = cur;
}
cur->_parent = ppnode;
}
}
private:
Node* _root = nullptr;
};