flink 向doris 数据库写入数据时出现背压如何排查?

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本文介绍了如何确定和解决Flink任务向Doris数据库写入数据时遇到的背压问题。首先通过Flink Web UI和性能指标监控识别背压,然后从Doris数据库性能、网络连接稳定性、Flink任务数据处理逻辑及资源配置等方面排查原因,并通过分析相关日志进一步定位问题。
  1. 确定背压是否存在及程度
  • 通过 Flink Web UI 观察:Flink 提供了 Web UI 来监控任务状态。在 Web UI 中,可以查看各个算子(Operator)的反压状态(Back Pressure Status)。绿色表示没有背压,黄色表示可能有轻微背压,红色表示严重背压。确定哪些算子出现背压,重点关注向 Doris 写入数据相关的算子,如Sink算子。
  • 查看性能指标:检查输入输出速率(Input/Output Rate)、缓冲区使用情况(Buffer Usage)等指标。如果输入速率持续大于输出速率,并且缓冲区使用率不断上升,这很可能是出现背压的信号。对于写入 Doris 任务,观察数据流入Sink算子的速度和实际写入 Doris 数据库的速度对比。
  1. 排查数据写入 Doris 环节的问题
  • Doris 数据库性能方面
  • 检查 Doris 集群资源:查看 Doris 所在服务器的 CPU、内存、磁盘 I/O 和网络带宽等资源是否紧张。如果 CPU 使用率过高,可能导致写入操作变慢。可以使用系统监控工具(如topiostat等)来检查这些资源的使用情况。
  • Doris 数据库负载情况:查看 Doris 数据库本身的负载,包括当前正在执行的查询数量、写入请求数量等。过多的并发写入或查询可能会影响新数据的写入性能。可以通过 Doris 的管理工具或监控接口来获取这些信息。
  • 检查 Doris 数据存储和分区策略:如果数据写入的表在 Doris 中的分区不合理,可能会导致写入性能下降。例如,数据集中写入某一个分区,而该分区所在磁盘 I/O 负载过重。检查分区策略是否符合数据分布特点,是否需要调整分区键或增加分区数量。
  • 网络连接方面
  • 检查网络稳定性和带宽:确保 Flink 任务与 Doris 数据库之间的网络连接稳定。不稳定的网络可能会导致数据传输延迟或中断,进而产生背压。可以使用网络测试工具(如pingtraceroute等)来检查网络状况。同时,查看网络带宽是否足够,如果带宽不足,考虑增加网络带宽或优化数据传输方式。
  • 检查连接池设置(如果有):如果在 Flink 任务中使用了连接池来管理与 Doris 的连接,检查连接池的配置是否合理。例如,连接池大小过小可能导致获取连接等待时间过长,影响数据写入速度。
  1. 排查 Flink 任务本身的问题
  • 数据处理逻辑方面
  • 检查数据转换和预处理步骤:在数据写入 Doris 之前,可能有一系列的转换、过滤、聚合等操作。检查这些操作是否过于复杂或耗时,导致数据处理速度跟不上流入速度。例如,复杂的聚合操作可能会占用大量的计算资源,使数据不能及时传递到Sink算子进行写入。
  • 数据倾斜问题:数据倾斜可能导致某些任务实例处理的数据量过大,进而影响整体写入速度。检查数据在 Flink 任务中的分布情况,特别是在group byjoin等操作后的数据分布。如果发现数据倾斜,可以考虑调整分区策略、使用随机化操作重新分配数据等方式来解决。
  • Flink 配置和资源方面
  • 检查任务并行度设置:不合理的并行度设置可能导致资源利用不充分或任务负载过重。对于写入 Doris 的任务,确保Sink算子的并行度设置合理,能够充分利用 Doris 的写入资源。如果并行度过低,数据写入速度可能受限;如果并行度过高,可能会给 Doris 带来过高的并发写入压力。
  • 检查 Flink 任务的内存和 CPU 资源分配:确保分配给 Flink 任务的内存和 CPU 资源足够。如果资源不足,任务的处理速度会变慢,容易产生背压。可以根据任务的数据量和复杂度,合理调整 Flink 任务的资源分配。
  1. 日志分析
  • Flink 任务日志:查看 Flink 任务的日志文件,查找可能与背压相关的错误信息或警告。例如,日志中可能会显示某个算子出现了缓冲区满、数据处理超时等情况,这些都可能是导致背压的原因。
  • Doris 数据库日志:检查 Doris 数据库的日志,查看是否有关于写入失败、连接问题、性能瓶颈等相关的记录。这些日志信息可以帮助确定是 Doris 数据库本身的问题还是数据传输过程中的问题。
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
6月前
|
监控 关系型数据库 MySQL
Flink CDC产品常见问题之flink-cdc任务抓取全量的mysql数据不生效如何解决
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。
|
6月前
|
消息中间件 关系型数据库 Kafka
flink cdc 数据问题之数据丢失如何解决
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。
|
6月前
|
关系型数据库 MySQL Apache
实时计算 Flink版操作报错之mysql整库同步到doris连接器报错,如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
5月前
|
关系型数据库 MySQL Java
实时计算 Flink版产品使用问题之如何提高Flink从MySQL读取数据的速度并减少延迟
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用合集之mysql cdc支持全量的时候并发读取,该如何配置
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用合集之在使用Flink SQL向ClickHouse写入数据的过程中出现丢数据或重复数据的情况如何解决
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
330 1
|
6月前
|
消息中间件 关系型数据库 MySQL
实时计算 Flink版产品使用合集之2.2.1版本同步mysql数据写入doris2.0 ,同步完了之后增量的数据延迟能达到20分钟甚至一直不写入如何解决
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
119 1
|
6月前
|
SQL Oracle 关系型数据库
实时计算 Flink版产品使用合集之从MySQL到Flink 1.16.2 Flink-SQL的数据同步工作出现了一个异常如何解决
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
128 0
|
6月前
|
分布式计算 Hadoop Java
Flink CDC产品常见问题之tidb cdc 数据量大了就疯狂报空指针如何解决
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。
|
6月前
|
关系型数据库 MySQL API
Flink CDC产品常见问题之mysql整库同步到starrock时任务挂掉如何解决
Flink CDC产品常见问题之mysql整库同步到starrock时任务挂掉如何解决
下一篇
无影云桌面