智能电话销售机器人源码搭建部署系统电话机器人源码

简介: 智能电话销售机器人源码搭建部署系统电话机器人源码

一般智能语音助理或语音机器人工作原理大致如下:

第一阶段:

语音到文本的过程。信号源→设备(捕获音频输入)→增强音频输入→检测语音→转换为其他形式(如文本)

第二阶段:

响应过程。处理文本(如用NLP处理文本,识别意图)→操作响应。

在检测语音过程中,就包括分辨是否为语音信号,该过程会通过指定的频率对模拟信号进行采样,将模拟声波转换为数字数据。这一过程很重要,是否成功地识别语音。如果生成数字数据都是错误的,那么后期的处理响应那肯定是错的。这也是影响智能语音助理或语音机器人识别率的重要因素。

在这个过程,用于语音处理的技术是语音活性检测 (Voice activity detection,VAD),目的是检测语音信号是否存在。 VAD技术主要用于语音编码和语音识别。它可以简化语音处理,也可用于在音频会话期间去除非语音片段:可以在IP电话应用中避免对静音数据包的编码和传输,节省计算时间和带宽。

文本将与大家分享VAD技术,首先讲两个概念:

信噪比(缩写为SNR或S / N)是科学和工程中使用的一种度量,它将所需信号的电平与背景噪声电平进行比较。

SNR定义为信号功率与噪声功率之比,通常以分贝表示。比率高于1:1(大于0 dB)表示信号多于噪声。

窗口,研究信号源,我们将其分成滑动窗口或仅窗口。

编辑能量检测器

能量检测器对于高SNR信号是有效的,但是当SNR下降直到它在1以下变得无效时失去效率。它也不能将语音与诸如冲击噪声(将笔放在桌子上),打字,空调或任何噪声之类的噪声区分开来。比人声更响亮或更响亮。

波形和频谱分析

在波形和频谱分析中,语音活动检测利用语音的已知特征。在该方法中应用VAD比基于能量的解决方案更加计算密集,但是能够更好地检测非平稳噪声和低SNR场景中的噪声。

对于浊音音素,声带的振动产生谐波丰富的声音,具有50到250 Hz之间的明显音调。所有元音,但也有一些辅音,表现出这种谐波结构,因此是语音的特征。代表谐波结构的特征是语音的可靠指标。然而,单独使用基于谐度或基于音调的特征不能预期无声语音部分(例如一些摩擦音)被检测到。此外,音乐或其他谐波噪声分量可能被误解为语音。

总的来说,对信号的倒谱的分析可以揭示信号能量的来源。

同样的,基于该共振峰结构,也是语音识别系统的重要特征。人类声道中的可变腔允许扬声器形成不同的音素。强调谐振(或共振峰)频率,导致频谱包络的特征形状。

平滑很重要,在一个对话中,一个人只有50%的时间在说话,并且存在大量非活动帧。诸如[p] [t] [k] [b]之类的音是静音,并且静音部分可能不会被算法识别为语音,这将影响自动语音识别系统的性能。

解决方案如下:

要被视为语音,必须至少有3个连续的窗口标记语音(192ms)。它可以防止短暂的噪音被视为语音。

要被认为是沉默,必须至少连续3个窗口标记为静音。它可以防止过多的语音切入影响语音节奏。

如果窗口被认为是语音,则前3个窗口和3个窗口被认为是语音。它可以防止在句子开头和结尾丢失信息。

基于统计分析

MFCC,FBANK,PLP是最常用的语音识别功能。有数学运算的连接,旨在通过保持最相关的数据来减少和压缩信息的数量。

在“信号源→设备(捕获音频输入)→增强音频输入→检测语音”过程中,语音成功采样识别为数字数据,是后期语言处理的前提,在检测中文面临更大挑战,断句、语气、语调等因素直接影响识别率。

目录
相关文章
|
14天前
|
存储 人工智能 弹性计算
阿里云弹性计算_加速计算专场精华概览 | 2024云栖大会回顾
2024年9月19-21日,2024云栖大会在杭州云栖小镇举行,阿里云智能集团资深技术专家、异构计算产品技术负责人王超等多位产品、技术专家,共同带来了题为《AI Infra的前沿技术与应用实践》的专场session。本次专场重点介绍了阿里云AI Infra 产品架构与技术能力,及用户如何使用阿里云灵骏产品进行AI大模型开发、训练和应用。围绕当下大模型训练和推理的技术难点,专家们分享了如何在阿里云上实现稳定、高效、经济的大模型训练,并通过多个客户案例展示了云上大模型训练的显著优势。
|
18天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
9天前
|
并行计算 前端开发 物联网
全网首发!真·从0到1!万字长文带你入门Qwen2.5-Coder——介绍、体验、本地部署及简单微调
2024年11月12日,阿里云通义大模型团队正式开源通义千问代码模型全系列,包括6款Qwen2.5-Coder模型,每个规模包含Base和Instruct两个版本。其中32B尺寸的旗舰代码模型在多项基准评测中取得开源最佳成绩,成为全球最强开源代码模型,多项关键能力超越GPT-4o。Qwen2.5-Coder具备强大、多样和实用等优点,通过持续训练,结合源代码、文本代码混合数据及合成数据,显著提升了代码生成、推理和修复等核心任务的性能。此外,该模型还支持多种编程语言,并在人类偏好对齐方面表现出色。本文为周周的奇妙编程原创,阿里云社区首发,未经同意不得转载。
|
14天前
|
人工智能 运维 双11
2024阿里云双十一云资源购买指南(纯客观,无广)
2024年双十一,阿里云推出多项重磅优惠,特别针对新迁入云的企业和初创公司提供丰厚补贴。其中,36元一年的轻量应用服务器、1.95元/小时的16核60GB A10卡以及1元购域名等产品尤为值得关注。这些产品不仅价格亲民,还提供了丰富的功能和服务,非常适合个人开发者、学生及中小企业快速上手和部署应用。
|
21天前
|
缓存 监控 Linux
Python 实时获取Linux服务器信息
Python 实时获取Linux服务器信息
|
4天前
|
云安全 存储 弹性计算
|
6天前
|
云安全 人工智能 自然语言处理
|
9天前
|
人工智能 自然语言处理 前端开发
用通义灵码,从 0 开始打造一个完整APP,无需编程经验就可以完成
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。本教程完全免费,而且为大家准备了 100 个降噪蓝牙耳机,送给前 100 个完成的粉丝。获奖的方式非常简单,只要你跟着教程完成第一课的内容就能获得。
|
25天前
|
自然语言处理 数据可视化 前端开发
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
合合信息的智能文档处理“百宝箱”涵盖文档解析、向量化模型、测评工具等,解决了复杂文档解析、大模型问答幻觉、文档解析效果评估、知识库搭建、多语言文档翻译等问题。通过可视化解析工具 TextIn ParseX、向量化模型 acge-embedding 和文档解析测评工具 markdown_tester,百宝箱提升了文档处理的效率和精确度,适用于多种文档格式和语言环境,助力企业实现高效的信息管理和业务支持。
3984 5
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
|
3天前
|
人工智能 C++ iOS开发
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
266 3