R中单细胞RNA-seq数据分析教程 (2)

本文涉及的产品
文本翻译,文本翻译 100万字符
文档翻译,文档翻译 1千页
图片翻译,图片翻译 100张
简介: R中单细胞RNA-seq数据分析教程 (2)

引言

本系列开启R中单细胞RNA-seq数据分析教程,持续更新,欢迎关注,转发!

导入Seurat包

首先,请确认你的R软件已经安装了Seurat这个包。

library(Seurat)

这会将您已安装的Seurat包载入您当前的R环境中。通常不会出现错误,但可能会有一些详细信息显示。如果提示您该包无法找到,请先进行Seurat的安装。

install.packages("Seurat")
library(Seurat)

1. 创建Seurat对象

Seurat 引入了一种新的数据类型,称为“ Seurat ”。这种数据类型使得 Seurat 能够记录整个分析过程中的所有步骤和结果。因此,首要步骤是导入数据并构建一个 Seurat 对象。对于通过 10x Genomics 平台产生的数据,Seurat 提供了一种便捷的处理方式。

counts <- Read10X(data.dir = "data/DS1/")
seurat <- CreateSeuratObject(counts, project="DS1")

Read10X 函数的功能是导入数据矩阵,并将其行名和列名分别按照基因名称和细胞条码进行重新命名。当然,如果数据不是通过 10x 平台生成的,人们也可以选择手动进行这些操作。

library(Matrix)
counts <- readMM("data/DS1/matrix.mtx.gz")
barcodes <- read.table("data/DS1/barcodes.tsv.gz", stringsAsFactors=F)[,1]
features <- read.csv("data/DS1/features.tsv.gz", stringsAsFactors=F, sep="\t", header=F)
rownames(counts) <- make.unique(features[,2])
colnames(counts) <- barcodes

seurat <- CreateSeuratObject(counts, project="DS1")

如果您浏览Seurat教程,您会发现在CreateSeuratObj函数中增加了一些额外的参数,比如min.cellsmin.features。当设置这些参数后,会对数据进行初步筛选,从一开始就排除那些在太少细胞中被检测到的基因,以及那些检测到基因数量过少的细胞。这种做法是可行的,但建议保留所有基因(即保持默认设置或将min.cells设为0)。

2. 质量控制

在创建Seurat对象之后,接下来的步骤是对数据进行质量控制。最常见的质量控制包括筛选掉:

  1. 检测到的基因数量过少的细胞。这些通常意味着细胞的测序深度不足以进行可靠的特征描述。
  2. 检测到的基因数量过多的细胞。这些可能代表双细胞或多细胞(即同一液滴中的两个或多个细胞,因此具有相同的细胞条码)。
  3. 线粒体转录本百分比过高的细胞。由于大多数单细胞RNA测序实验使用寡T来捕获mRNA,线粒体转录本应该因为缺少poly-A尾而较少,但不可避免地会捕获一些线粒体转录本。同时,也有证据显示一些线粒体转录本中存在稳定的poly-A尾,但它们是降解的标志。总的来说,线粒体转录本百分比高的细胞可能代表处于压力状态的细胞(例如缺氧),这些细胞产生大量的线粒体,或者产生异常高数量的截短线粒体转录本。

虽然Seurat在创建Seurat对象时会自动统计检测到的基因数量(其中nFeature_RNA代表检测到的基因/特征数量;nCount_RNA代表检测到的转录本数量),但线粒体转录本的百分比需要手动计算。不过,Seurat提供了一个便捷的解决方案来处理这个问题。

seurat[["percent.mt"]] <- PercentageFeatureSet(seurat, pattern = "^MT[-\\.]")

请留意,筛选标准并非一成不变,因为这些指标的正常值范围可能因实验而异,这取决于样本来源、使用的试剂以及测序深度。这里建议仅排除异常值细胞,也就是那些在某些质量控制指标上明显偏离大多数细胞的少数细胞。为了做到这一点,首先需要了解这些值在数据中的分布情况。可以通过为每个指标绘制小提琴图来观察它们的分布。

VlnPlot(seurat, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)

VlnPlot(seurat, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3, pt.size=0)

正如所料,细胞中检测到的基因数量与转录本数量之间存在较强的相关性,但线粒体转录本的百分比却并非如此。

library(patchwork)
plot1 <- FeatureScatter(seurat, feature1 = "nCount_RNA", feature2 = "percent.mt")
plot2 <- FeatureScatter(seurat, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
plot1 + plot2

鉴于基因数量与转录本数量之间存在相关性,只需针对其中一个指标设定一个阈值,并结合线粒体转录本百分比的上限来进行质量控制。以这个数据集为例,将检测到的基因数量设定在500到5000之间,线粒体转录本百分比低于5%是一个合理的选择,但根据具体情况调整阈值也是完全可以的。

seurat <- subset(seurat, subset = nFeature_RNA > 500 & nFeature_RNA < 5000 & percent.mt < 5)

需要指出的是,有时候可能需要执行更严格的质量控制。其中一个可能的问题是细胞双重捕获(doublets)。由于不同细胞捕获的RNA量差异很大,双重捕获的细胞并不总是表现出更高的基因或转录本检测数量。目前有几个工具可以预测一个“细胞”是否为单个细胞,或者实际上是双重捕获/多重捕获。例如,DoubletFinder 通过在数据中随机平均细胞构建人工双重捕获,然后测试每个细胞是否与人工双重捕获更相似来预测双重捕获。这有助于判断一个细胞是否有可能是双重捕获。同样,线粒体转录本的百分比也许不足以筛选出处于压力或不健康的细胞。有时,可能需要进行额外的筛选,比如基于机器学习的预测

3. 数据标准化

与批量RNA-seq类似,由于不同细胞捕获的RNA量存在差异,不能直接比较不同细胞中每个基因的捕获转录本数量。因此,需要进行标准化处理,以使不同细胞间的基因表达水平可以相互比较。单细胞RNA-seq数据分析中最常用的标准化方法与TPM(每百万读数的转录本数)概念类似 - 即对每个细胞的特征表达量进行标准化,然后乘以一个缩放因子(默认为10000)。最后,将得到的表情水平进行对数转换,以便表达值更符合正态分布。值得一提的是,在进行对数转换之前,每个值都会加上一个伪计数,这样即使在某个细胞中未检测到转录本的基因,在对数转换后仍然可以显示为零值。

seurat <- NormalizeData(seurat)

通常,NormalizeData函数中有几个参数可以设置,但大多数时候使用默认设置就足够了。

4. 特征选择

与批量RNA-seq相比,单细胞RNA-seq的最大优势在于其能够探究样本的细胞异质性,即通过识别具有独特分子特征的细胞群体。然而,并非所有基因在识别不同细胞群体时都具有同等的信息量和贡献。例如,表达水平低的基因以及在所有细胞中表达水平相似的基因,它们提供的信息量较少,可能会模糊不同细胞群体之间的差异。因此,在深入分析scRNA-seq数据之前,进行恰当的特征选择是非常必要的。

在Seurat或者更广泛地说,在单细胞RNA-seq数据分析中,这一步通常涉及到识别表达水平在细胞间变化最大的高变异性特征/基因。

seurat <- FindVariableFeatures(seurat, nfeatures = 3000)

通常,Seurat 会计算每个基因在不同细胞中的标准化方差,并挑选出变异性最大的2000个基因作为高变异特征。你可以通过设置nfeatures参数(例如,这里选择了前3000个基因)来轻松调整高变异特征的数量。

关于应该使用多少高变异特征,并没有一个固定的标准。有时需要尝试几次,以确定哪个数量能够提供最清晰和最容易解释的结果。大多数情况下,选择2000到5000之间的数值是合适的,而且使用不同的数值对结果的影响不会太大。

此外,你可以选择在变量特征图中展示这些结果,但这并不是必需的步骤。

top_features <- head(VariableFeatures(seurat), 20)
plot1 <- VariableFeaturePlot(seurat)
plot2 <- LabelPoints(plot = plot1, points = top_features, repel = TRUE)
plot1 + plot2

相关文章
|
8月前
|
机器学习/深度学习 算法 数据挖掘
数据分析入门系列教程-K-Means实战
数据分析入门系列教程-K-Means实战
|
2月前
|
数据可视化 数据挖掘
R中单细胞RNA-seq数据分析教程 (3)
R中单细胞RNA-seq数据分析教程 (3)
39 3
R中单细胞RNA-seq数据分析教程 (3)
|
2月前
|
SQL 数据挖掘 Python
R中单细胞RNA-seq数据分析教程 (1)
R中单细胞RNA-seq数据分析教程 (1)
41 5
R中单细胞RNA-seq数据分析教程 (1)
|
2月前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
8月前
|
存储 数据挖掘 索引
Python 教程之 Pandas(14)—— 使用 Pandas 进行数据分析
Python 教程之 Pandas(14)—— 使用 Pandas 进行数据分析
65 0
Python 教程之 Pandas(14)—— 使用 Pandas 进行数据分析
|
8月前
|
存储 机器学习/深度学习 数据挖掘
提升数据分析效率:Amazon S3 Express One Zone数据湖实战教程
提升数据分析效率:Amazon S3 Express One Zone数据湖实战教程
153 1
|
8月前
|
机器学习/深度学习 算法 数据挖掘
数据分析入门系列教程-股票走势预测分析
数据分析入门系列教程-股票走势预测分析
120 0
数据分析入门系列教程-股票走势预测分析
|
8月前
|
存储 数据挖掘 Python
借助 PyPDF2 库把数据分析系列教程文章制作成了PDF电子书,欢迎来领取!
借助 PyPDF2 库把数据分析系列教程文章制作成了PDF电子书,欢迎来领取!
|
8月前
|
数据采集 算法 数据可视化
数据分析入门系列教程-EM实战-划分LOL英雄
数据分析入门系列教程-EM实战-划分LOL英雄
|
8月前
|
算法 数据挖掘
数据分析入门系列教程-EM原理
数据分析入门系列教程-EM原理

热门文章

最新文章