基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM

简介: 本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。

1.算法运行效果图预览
(完整程序运行后无水印)

pso优化SVM过程:

image.png

识别率对比:

image.png
image.png

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

```x = rand(Num,D)/50;
v = rand(Num,D)/50;
%先计算各个粒子的适应度,并初始化Pi和Pg
for i=1:Num
[p(i)] = fitness(x(i,:),P,T);
y(i,:)= x(i,:);
end
%全局最优
pg = x(1,:);

for i=2:Num
[pa(i)] = fitness(x(i,:),P,T);
[pb(i)] = fitness(pg,P,T);

if pa(i) < pb(i)
   pg=x(i,:);
end

end

for t=1:Iters
t
for i=1:Num
v(i,:) = v(i,:)+c1rand(y(i,:)-x(i,:))+c2rand(pg-x(i,:));
x(i,:) = x(i,:)+v(i,:);

    if x(i,1)<0
       x(i,1)=0.01; 
    end
    if x(i,2)<0
       x(i,2)=0.001; 
    end
    [pa(i)] = fitness(x(i,:),P,T);
    if pa(i)<p(i)
       p(i)  = pa(i);
       y(i,:)= x(i,:);
    end
    [pb(i)] = fitness(pg,P,T);
    if p(i)<pb(i)
       pg=y(i,:);
    end
end
Pbest(t)  = mean(pb);
t

end

figure;
plot(Pbest,'b');
legend('加权收敛目标');
grid on

%保存最优参数
for i=1:Num
[pa(i)] = fitness(x(i,:),P,T);
end
[V,I] = min(pa);

C = x(I,1)/5;
gamma = x(I,2)/20;
05_0071m

save para.mat C gamma

```

4.算法理论概述
粒子群优化(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,它模仿了鸟群觅食的行为。支持向量机(Support Vector Machine, SVM)是一种用于分类和回归分析的监督学习方法。将PSO与SVM结合,可以优化SVM中的参数选择问题,从而提高分类精度和泛化能力。

4.1 PSO粒子群优化
粒子群优化算法是由Kennedy和Eberhart在1995年提出的。该算法模拟了鸟类觅食的行为,通过个体之间的协作完成搜索任务。每个“粒子”代表一个潜在解,每个粒子在搜索空间中具有位置和速度两个属性。

4.png

其中,w 是惯性权重,c1 和c2 是加速常数,r1 和r2 是[0,1]区间内的随机数。pbest,i 是粒子i的最佳历史位置,而gbest 是整个群体中的最佳位置。

4.2 svm
SVM的目标是在不同类别之间找到一个最优的超平面,使得两类样本被尽可能远地分开。对于线性可分问题,SVM试图找到一个线性决策边界,即:

5.png

4.3 PSO-SVM
在PSO-SVM中,PSO用于优化SVM的参数,如C(惩罚系数)、γ(核函数中的参数)。具体步骤如下:

初始化PSO种群;
每个粒子代表一组SVM参数;
使用交叉验证的方法评估每组参数下的SVM分类性能;
根据分类性能更新粒子的位置和速度;
迭代直至满足终止条件。
PSO-SVM不仅能够有效解决SVM中参数选择的问题,还能够获得比传统SVM和BP神经网络更高的分类精度和更好的泛化能力。因此,在处理如乳腺癌这样的复杂分类问题时,PSO-SVM提供了一种有效的解决方案。

相关文章
|
6月前
|
机器学习/深度学习 数据采集 算法
【MATLAB】BiGRU神经网络回归预测算法
【MATLAB】BiGRU神经网络回归预测算法
396 0
|
6月前
|
机器学习/深度学习 算法 数据挖掘
【MATLAB】REMD_ MFE_SVM_LSTM 神经网络时序预测算法
【MATLAB】REMD_ MFE_SVM_LSTM 神经网络时序预测算法
95 5
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-GRU的时间序列回归预测matlab仿真
时间序列预测关键在于有效利用历史数据预测未来值。本研究采用卷积神经网络(CNN)提取时间序列特征,结合GRU处理序列依赖性,并用灰狼优化(GWO)精调模型参数。CNN通过卷积与池化层提取数据特征,GRU通过更新门和重置门机制有效管理长期依赖。GWO模拟灰狼社群行为进行全局优化,提升预测准确性。本项目使用MATLAB 2022a实现,含详细中文注释及操作视频教程。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的CNN-GRU的时间序列回归预测matlab仿真
- **算法理论:** 利用PSO优化的CNN-GRU,结合CNN的特征提取和GRU的记忆机制,进行时间序列预测。 - **CNN:** 通过卷积捕获序列的结构信息。 - **GRU:** 简化的LSTM,处理序列依赖。 - **预测步骤:** 1. 初始化粒子群,每粒子对应一组模型参数。 2. 训练并评估CNN-GRU模型的验证集MSE。 3. 使用PSO更新参数,寻找最佳配置。 4. 迭代优化直至满足停止准则。 ```
|
6月前
|
机器学习/深度学习 算法
【MATLAB】PSO_BiLSTM神经网络回归预测算法
【MATLAB】PSO_BiLSTM神经网络回归预测算法
79 0
|
4月前
|
机器学习/深度学习 算法
基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
**算法预览图省略** - **软件版本**: MATLAB 2022a - **核心代码片段**略 - **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。 - **CNN**利用卷积捕获时间序列的空间特征。 - **LSTM**通过门控机制处理长序列依赖,避免梯度问题。 - **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM参数。 2. 训练模型,以验证集MSE评估适应度。 3. 使用PSO更新粒子参数,寻找最佳配置。 4. 迭代优化直到满足停止条件,如最大迭代次数或找到优良解。
|
6月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真
摘要: 本文介绍了使用matlab2022a中优化后的算法,应用于时间序列回归预测,结合CNN、LSTM和Attention机制,提升预测性能。GWO算法用于优化深度学习模型的超参数,模拟灰狼社群行为以求全局最优。算法流程包括CNN提取局部特征,LSTM处理序列依赖,注意力机制聚焦相关历史信息。GWO的灰狼角色划分和迭代策略助力寻找最佳解。
|
6月前
|
机器学习/深度学习 算法 数据挖掘
【MATLAB】MVMD_ MFE_SVM_LSTM 神经网络时序预测算法
【MATLAB】MVMD_ MFE_SVM_LSTM 神经网络时序预测算法
103 2
下一篇
无影云桌面