基于离散差分法的复杂微分方程组求解matlab数值仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 本程序使用离散差分法求解复杂微分方程组,将连续微分方程转化为差分方程,采用一阶显式时间格式和一阶偏心空间格式。经MATLAB2022a测试验证有效。

1.程序功能描述
基于离散差分法的复杂微分方程组求解.“连续微分方程”到“离散微分方程”到“差分方程”,离散微分方程,变成差分方程。建立差分方程时,时间采用一阶显格式,空间采用一阶偏心差分格式。

1.png

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

2.jpeg
3.jpeg
4.jpeg
5.jpeg
7.jpeg
8.jpeg
9.jpeg
10.jpeg
11.jpeg

3.核心程序

```% ʼ
L = 0.05; % ռ䳤
time = 1e-8; %ʱ 䳤
Nz = 10; % ռ
Nt = 10; %ʱ
dt = time/Nt;%t΢ ֵ ۼ
dz = L/Nz;%z΢ ֵ ۼ

N1 = zeros(Nz,Nt);
N2 = zeros(Nz,Nt);
N3 = zeros(Nz,Nt);
N4 = zeros(Nz,Nt);
N1_Yb = zeros(Nz,Nt);
N2_Yb = zeros(Nz,Nt);
Ps = zeros(Nz,Nt);

PASE_plus = zeros(M,Nz,Nt);
PASE_minus = zeros(M,Nz,Nt);
Pp_plus = zeros(Nz,Nt);
Pp_minus = zeros(Nz,Nt);

G = zeros(Nz,Nt);
NF = zeros(Nz,Nt);

% 1 ʽ 1 ϵ IJ ʾ
W11 = FpO13_vp/(AchVp);
W12 = Fs
O12_vs/(AchVs);
for i = 1:M
W13(i) = F_ASE_vj(i) O12_vj(i) / (Ach*Vj(i));
end

W14 = FsO21_vs/(AchVs);
for i = 1:M
W15(i) = F_ASE_vj(i)
O21_vj(i) / (AchVj(i));
end

W16 = FpO31_vp/(Ach*Vp);

% 1 ʽ 2 ϵ IJ ʾ
W21 = FsO12_vs/(Ach*Vs);

for i = 1:M
W22(i) = F_ASE_vj(i) O12_vj(i) / (AchVj(i));
end
W23 = Fs
O21_vs/(AchVs);

for i = 1:M
W24(i) = F_ASE_vj(i) O21_vj(i) / (Ach*Vj(i));
end

% 1 ʽ 3 ϵ IJ ʾ
W31 = FpO13_vp/(AchVp);
W32 = Fp
O31_vp/(AchVp);

% 1 ʽ 4 ϵ IJ ʾ
W41 = FpO12Yb_vp/(AchVp);
W42 = Fp
O21Yb_vp/(AchVp);
Ps(1,:) = 0.001ones(1,Nt);
Pp_plus(1,:) = 0.06
ones(1,Nt);
Pp_minus(1,:) = 0.04*ones(1,Nt);

for j = 1:Nt-1
for i = 1:Nz-1
% 1ʽ 1
N1(i,j+1) = N1(i,j) + ...
dt( -1(W11(Pp_plus(i,j) + Pp_minus(i,j)) + W12Ps(i,j) + sum(W13.(PASE_plus(:,i,j)+PASE_minus(:,i,j))'))N1(i,j) +...
(A21 + W14Ps(i,j) + sum(W15.(PASE_plus(:,i,j)+PASE_minus(:,i,j))'))N2(i,j) + ...
C2
N2(i,j)^2 + W16(Pp_plus(i,j) + Pp_minus(i,j))N3(i,j) + C3N3(i,j)^2 - C14N1(i,j)N4(i,j)+...
-1
KtrN2_Yb(i,j)N1(i,j)+KbaN1_Yb(i,j)N3(i,j) );

    %      1ʽ  2
    N2(i,j+1) = N2(i,j) + ...   
                dt*( (W21*Ps(i,j)+sum(W22.*(PASE_plus(:,i,j)+PASE_minus(:,i,j))'))*N1(i,j) +...
                  -1*(A21 + W23*Ps(i,j) + sum( W24.*(PASE_plus(:,i,j)+PASE_minus(:,i,j))' ))*N2(i,j) +...
                      A32*N3(i,j) - 2*C2*N2(i,j)^2 + 2*C14*N1(i,j)*N4(i,j) );

    %      1ʽ  3
    N3(i,j+1) = N3(i,j) + ...    
                dt*( W31*(Pp_plus(i,j) + Pp_minus(i,j))*N1(i,j) - A32*N3(i,j) - W32*(Pp_plus(i,j) + Pp_minus(i,j))*N3(i,j) -...
                     2*C3*N3(i,j)^2 + A43*N4(i,j) + Ktr*N2_Yb(i,j)*N1(i,j) - Kba*N1_Yb(i,j)*N3(i,j) );

    %      1ʽ  4
    N1_Yb(i,j+1) = N1_Yb(i,j) + ...
                   dt*(-1*W41*(Pp_plus(i,j) + Pp_minus(i,j))*N1_Yb(i,j) + W42*(Pp_plus(i,j) + Pp_minus(i,j))*N2_Yb(i,j) +...
                          A21Yb*N2_Yb(i,j) + Ktr*N2_Yb(i,j)*N1(i,j) - Kba*N1_Yb(i,j)*N3(i,j));

    %      1ʽ  5
    N4(i,j+1) = NEr - (N1(i,j+1) + N2(i,j+1) + N3(i,j+1)); 

    %      1ʽ  6
    N2_Yb(i,j+1) = NYb - N1_Yb(i,j+1);

    if N1(i,j+1) > NEr,N1(i,j+1) = NEr;end
    if N2(i,j+1) > NEr,N2(i,j+1) = NEr;end    
    if N3(i,j+1) > NEr,N3(i,j+1) = NEr;end    
    if N4(i,j+1) > NEr,N4(i,j+1) = NEr;end    
    if N1_Yb(i,j+1) > NYb,N1_Yb(i,j+1) = NYb;end
    if N2_Yb(i,j+1) > NYb,N2_Yb(i,j+1) = NYb;end          

    if N1(i,j+1) < 0,N1(i,j+1) = 0;end
    if N2(i,j+1) < 0,N2(i,j+1) = 0;end    
    if N3(i,j+1) < 0,N3(i,j+1) = 0;end    
    if N4(i,j+1) < 0,N4(i,j+1) = 0;end    
    if N1_Yb(i,j+1) < 0,N1_Yb(i,j+1) = 0;end
    if N2_Yb(i,j+1) < 0,N2_Yb(i,j+1) = 0;end             


    %     Ϸ  ̼   õ   N1  N2  N3  N4  N1Yb  N2Yb    
    %      2
    Pp_plus(i+1,j)   =  Pp_plus(i,j)  + dz*(-Fp*(O13_vp*N1(i,j) - O31_vp*N3(i,j) + O12Yb_vp*N1_Yb(i,j) - O21Yb_vp*N2_Yb(i,j))*Pp_plus(i,j)  - ap*Pp_plus(i,j));

    Pp_minus(i+1,j)  =  Pp_minus(i,j) + dz*(Fp*(O13_vp*N1(i,j) - O31_vp*N3(i,j) + O12Yb_vp*N1_Yb(i,j) - O21Yb_vp*N2_Yb(i,j))*Pp_minus(i,j) + ap*Pp_plus(i,j));

    Ps(i+1,j)        =  Ps(i,j)     + dz*(Fs*( O21_vs*N2(i,j) - O12_vs*N1(i,j) )*Ps(i,j) - as*Ps(i,j)); 

    for ii = 1:M
        PASE_plus(ii,i+1,j)  =    PASE_plus(ii,i,j)+dz*(F_ASE_vj(ii)*( O21_vj(ii)*N2(i,j) - O12_vj(ii)*N1(i,j) ) * PASE_plus(ii,i,j) +...
                                  2*h*Vj(ii)*DVj(ii)*F_ASE_vj(ii)*O21_vj(ii)*N2(i,j)-as*PASE_plus(ii,i,j));

        PASE_minus(ii,i+1,j) =   PASE_minus(ii,i,j)+dz*(-1*F_ASE_vj(ii)*( O21_vj(ii)*N2(i,j) - O12_vj(ii)*N1(i,j) ) * PASE_minus(ii,i,j) -...
                                 2*h*Vj(ii)*DVj(ii)*F_ASE_vj(ii)*O21_vj(ii)*N2(i,j)+as*PASE_minus(ii,i,j));            
    end

    if Pp_plus(i+1,j)    < 0,Pp_plus(i+1,j)     = 0;end
    if Pp_minus(i+1,j)   < 0,Pp_minus(i+1,j)    = 0;end
    if Ps(i+1,j)         < 0,Ps(i+1,j)          = 0;end        

    %ͨ    ̬    õ Pp+  Pp-  Pase+  Pase-  Ps

end
AI 代码解读

end

for z = 1:Nz
for t = 1:Nt
PASE_plus2(z,t) = sum(PASE_plus(:,z,t));
PASE_minus2(z,t) = sum(PASE_minus(:,z,t));
end
end

for z = 1:Nz
for t = 1:Nt
G(z,t) = 10*log10(Ps(z,t)/Ps(1,1));
end
end

for z = 1:Nz
for t = 1:Nt
NF(z,t) = 10log10(1/G(z,t) + PASE_plus2(z,t)/(G(z,t)Vs*DVs) );
end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Pp_plus2 = interp1(dz:dz:L,Pp_plus(1:end,Nz),0:dz/10:L,'cubic');
Pp_minus2 = interp1(dz:dz:L,Pp_minus(1:end,Nz),0:dz/10:L,'cubic');

figure;
subplot(211);
plot(0:dz/10:L,Pp_plus2,'g-','LineWidth',3);
xlabel('z');
ylabel('Pp+(Z)');
title('Pp+(Z)&z');
grid on;
subplot(212);
plot(L:-dz/10:0,Pp_minus2,'m--','LineWidth',2);
xlabel('z');
ylabel('Pp-(Z)');
title('Pp-(Z)&z');
grid on;
16_015m

```

4.本算法原理
本课题求解的方程组表达式如下:

996ad47c0a464ea7e85e3354fde0347e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
ba8a8b5d26bfb37d8ac099cba85451c6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

基于离散差分法的复杂微分方程组求解.“连续微分方程”到“离散微分方程”到“差分方程”,离散微分方程,变成差分方程。建立差分方程时,时间采用一阶显格式,空间采用一阶偏心差分格式。
AI 代码解读
目录
打赏
0
2
2
0
213
分享
相关文章
matlab实现D2D链路仿真
matlab实现D2D链路仿真
36 3
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
45 10
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
24天前
|
基于遗传优化算法的带时间窗多车辆路线规划matlab仿真
本程序基于遗传优化算法,实现带时间窗的多车辆路线规划,并通过MATLAB2022A仿真展示结果。输入节点坐标与时间窗信息后,算法输出最优路径规划方案。示例结果包含4条路线,覆盖所有节点并满足时间窗约束。核心代码包括初始化、适应度计算、交叉变异及局部搜索等环节,确保解的质量与可行性。遗传算法通过模拟自然进化过程,逐步优化种群个体,有效解决复杂约束条件下的路径规划问题。
基于FD-MIMO技术的雷达通信一体化系统波形设计matlab模拟与仿真
本项目研究基于FD-MIMO雷达的波形设计与优化,旨在提升雷达检测性能和通信传输能力。通过遗传算法优化波束成形向量,在CRLB约束下最大化信噪比,解决非凸优化问题。相比传统MIMO雷达,FD-MIMO可通过距离-角度联合依赖的波束模式区分同一角度但不同距离的目标。代码基于Matlab 2022a/2024b开发,包含详细中文注释及操作视频,展示算法运行效果(无水印)。系统模型涉及双功能发射机、雷达接收阵列及多目标通信场景,考虑多径效应和莱斯平坦衰落信道特性。
基于遗传算法的64QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容主要探讨基于遗传算法(GA)优化的64QAM概率星座整形(PCS)技术。通过改变星座点出现的概率分布,使外圈点频率降低,从而减小平均功率、增加最小欧氏距离,提升传输性能。仿真使用Matlab2022a完成,展示了优化前后星座图与误码率对比,验证了整形增益及频谱效率提升效果。理论分析表明,Maxwell-Boltzman分布为最优概率分布,核心程序通过GA搜索最佳整形因子v,以蒙特卡罗方法估计误码率,最终实现低误码率优化目标。
31 1
基于云模型的车辆行驶速度估计算法matlab仿真
本项目基于云模型的车辆行驶速度估计算法,利用MATLAB2022A实现仿真。相比传统传感器测量方法,该算法通过数据驱动与智能推理间接估计车速,具备低成本、高适应性特点。核心程序通过逆向正态云发生器提取样本数据的数字特征(期望、熵、超熵),再用正向云发生器生成云滴进行速度估算。算法结合优化调整云模型参数及规则库更新,提升速度估计准确性。验证结果显示,其估算值与高精度传感器测量值高度吻合,适用于交通流量监测、安全预警等场景。
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
基于Astar的复杂栅格地图路线规划算法matlab仿真
本项目基于A*算法实现复杂栅格地图的路径规划,适用于机器人导航、自动驾驶及游戏开发等领域。通过离散化现实环境为栅格地图,每个栅格表示空间区域属性(如可通行性)。A*算法利用启发函数评估节点,高效搜索从起点到终点的近似最优路径。项目在MATLAB2022a中运行,核心程序包含路径回溯与地图绘制功能,支持障碍物建模和路径可视化。理论结合实践,该方法具有重要应用价值,并可通过技术优化进一步提升性能。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问