基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR

简介: 本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。

1.算法仿真效果
本课题是博主之前写的文章

《m基于FPGA的4FSK调制解调系统verilog实现,包含testbench测试文件》的升级

升级内容包含高斯信道模块,误码率统计模块,可以设置不同SNR。

vivado2019.2版本开发,仿真结果如下:

设置SNR=30

deced095671477c15c6812823fc2de3c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

设置SNR=15

1b46e31a9f1219cef2d51b8c014f77b8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

设置SNR=10

9962b67fab538af9dc1c4a0bc7708503_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

设置SNR=5

73cef444f89a3f060859a225a4481a43_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

系统RTL结构如下:

eaf2c56a1c172f719c8bdb9b1c02e9d2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
四频移键控(4FSK)是一种常用的数字调制方法,具有较高的频带利用率和抗干扰性能。它利用不同的频率来传输二进制数据,通常应用于无线通信和数据传输等领域。

2.1、原理与数学公式
4FSK调制的基本原理是将输入的二进制数据转换为不同频率的信号,以实现数据的传输。解调则是将接收到的不同频率的信号还原为原始的二进制数据。

  在4FSK调制中,输入的二进制数据被分为两组,每组有两个比特。根据这两个比特的值,选择相应的频率输出。具体来说,有四个频率f1、f2、f3、f4与之对应,每个频率都代表一个二进制组合(00、01、10、11),即十进制的0,1,2,3。

频率选择:根据输入的比特组合选择相应的频率输出。例如,当输入为“00”时,选择频率f1;当输入为“01”时,选择频率f2;当输入为“10”时,选择频率f3;当输入为“11”时,选择频率f4。
调制信号:将选择的频率进行幅度调制,以便在传输过程中具有更好的抗干扰性能。通常采用开关键控(OOK)或脉冲幅度调制(PAM)等方法进行幅度调制。
解调信号:在接收端,根据不同频率的信号进行解调。首先通过带通滤波器将所需的频率信号提取出来,然后通过解调器将其还原为原始的二进制数据。解调方法通常采用相干解调或非相干解调。

2.2、FPGA实现过程
基于FPGA的4FSK调制解调系统实现过程如下: 输入数据流:首先,将输入的二进制数据流分为两组,每组两个比特。可以使用一个时钟信号来同步数据的输入。
频率选择:根据每组两个比特的值,选择相应的频率输出。可以使用一个4输入的MUX来实现频率选择功能。根据输入的比特组合选择相应的频率输出信号。
传输信号:将调制后的信号通过发射器发送出去。在这个过程中,可能需要添加一些滤波器和其他信号处理模块来优化传输性能。
接收信号:在接收端,接收到信号后首先通过滤波器将所需的频率信号提取出来。这个过程可以通过FPGA上的数字滤波器实现。
解调信号:将滤波后的信号送入解调器进行解调。可以使用Verilog中的相关模块来实现解调功能。例如,通过检测脉冲信号的上升沿和下降沿来确定解调的比特值。
通过将FPGA的高速度和并行性特点与4FSK调制解调技术相结合,可以实现高速、高效的数字通信系统。这种实现方法具有广泛的应用前景,可以应用于无线通信、数据传输、物联网等领域。

3.Verilog核心程序
```module FSK(
input i_clk,
input i_rst,
input signed[7:0]i_SNR,
input[1:0]i_bits,
output signed[15:0]o_carrier1,
output signed[15:0]o_carrier2,
output signed[15:0]o_carrier3,
output signed[15:0]o_carrier4,
output signed[15:0]o_fsk,
output signed[15:0]o_fsk_Rn,
output signed[31:0]o_de_fsk1,
output signed[31:0]o_de_fsk2,
output signed[31:0]o_de_fsk3,
output signed[31:0]o_de_fsk4,
output [1:0]o_bits,
output signed[31:0]o_error_num,
output signed[31:0]o_total_num
);

//调制
FSK_mod FSK_mod_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_bits (i_bits),
.o_carrier1(o_carrier1),
.o_carrier2(o_carrier2),
.o_carrier3(o_carrier3),
.o_carrier4(o_carrier4),
.o_fsk (o_fsk)
);

awgns awgns_u(
.i_clk(i_clk),
.i_rst(i_rst),
.i_SNR(i_SNR), //这个地方可以设置信噪比,数值大小从-10~50,
.i_din(o_fsk),
.o_noise(),
.o_dout(o_fsk_Rn)
);
解调//解调//解调//解调//解调//解调//解调//解调//解调//解调//解调//解调//解调
FSK_demod FSK_demod_u(
.i_clk(i_clk),
.i_rst(i_rst),
.i_fsk(o_fsk_Rn),
.o_de_fsk1(o_de_fsk1),
.o_de_fsk2(o_de_fsk2),
.o_de_fsk3(o_de_fsk3),
.o_de_fsk4(o_de_fsk4),
.o_de_ffsk1(),
.o_de_ffsk2(),
.o_de_ffsk3(),
.o_de_ffsk4(),
.o_bits(o_bits)
);

//error calculate
Error_Chech Error_Chech_u(
.i_clk(i_clk),
.i_rst(i_rst),
.i_trans(i_bits),
.i_rec(o_bits),
.o_error_num(o_error_num),
.o_total_num(o_total_num)
);

endmodule
```

相关文章
|
12天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
33 1
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
47 4
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现16QAM调制解调通信系统,使用Verilog语言编写,包括信道模块、误码率统计模块。通过设置不同SNR值(如8dB、12dB、16dB),仿真测试系统的误码性能。项目提供了完整的RTL结构图及操作视频,便于理解和操作。核心程序实现了信号的生成、调制、信道传输、解调及误码统计等功能。
44 3
|
15天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的256QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了256QAM调制解调算法的仿真效果及理论基础。使用Vivado 2019.2进行仿真,分别在SNR为40dB、32dB和24dB下生成星座图,并导入Matlab进行分析。256QAM通过将8比特数据映射到复平面上的256个点,实现高效的数据传输。Verilog核心程序包括调制、信道噪声添加和解调模块,最终统计误码率。
28 0
|
6月前
|
机器学习/深度学习 算法 异构计算
m基于FPGA的多通道FIR滤波器verilog实现,包含testbench测试文件
本文介绍了使用VIVADO 2019.2仿真的多通道FIR滤波器设计。展示了系统RTL结构图,并简述了FIR滤波器的基本理论,包括单通道和多通道的概念、常见结构及设计方法,如窗函数法、频率采样法、优化算法和机器学习方法。此外,还提供了Verilog核心程序代码,用于实现4通道滤波器模块,包含时钟、复位信号及输入输出接口的定义。
180 7
|
1月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
1月前
|
存储 算法 数据处理
基于FPGA的8PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统在原有的8PSK调制解调基础上,新增了高斯信道与误码率统计模块,验证了不同SNR条件下的8PSK性能。VIVADO2019.2仿真结果显示,在SNR分别为30dB、15dB和10dB时,系统表现出不同的误码率和星座图分布。8PSK作为一种高效的相位调制技术,广泛应用于无线通信中。FPGA凭借其高度灵活性和并行处理能力,成为实现此类复杂算法的理想平台。系统RTL结构展示了各模块间的连接与协同工作。
51 16
|
6月前
|
编解码 算法 异构计算
基于FPGA的NC图像质量评估verilog实现,包含testbench和MATLAB辅助验证程序
在Vivado 2019.2和Matlab 2022a中测试的图像质量评估算法展示了效果。该算法基于NC指标,衡量图像与原始图像的相似度,关注分辨率、色彩深度和失真。提供的Verilog代码段用于读取并比较两个BMP文件,计算NC值。
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
### 简介 本项目采用VIVADO 2019.2进行了十六进制相位移键控(16PSK)算法仿真,结果显示,在SNR=30dB时效果为Tttttttttttttt12,在SNR=20dB时效果为Tttttttttttttt34。系统RTL结构如Tttttttttttttt555555所示。16PSK是一种高效的相位调制技术,能在每个符号时间内传输4比特信息,适用于高速数据传输。其工作原理包括将比特流映射到16个相位状态之一(Tttttttttttttt777777),并通过匹配滤波和决策进行解调。具体Verilog核心程序见完整代码。
36 1
|
6月前
|
算法 异构计算
m基于FPGA的MPPT最大功率跟踪算法verilog实现,包含testbench
该内容包括三部分:1) 展示了Vivado 2019.2和Matlab中关于某种算法的仿真结果图像,可能与太阳能光伏系统的最大功率点跟踪(MPPT)相关。2) 简述了MPPT中的爬山法原理,通过调整光伏电池工作点以找到最大功率输出。3) 提供了一个Verilog程序模块`MPPT_test_tops`,用于测试MPPT算法,其中包含`UI_test`和`MPPT_module_U`两个子模块,处理光伏电流和电压信号。
69 1

热门文章

最新文章

下一篇
无影云桌面