生成式人工智能入门指南

简介: 生成式 AI 是人工智能的一个子领域,专注于通过学习现有数据的模式创建新内容或生成解决方案。它是一种鼓励 AI 系统利用对数据结构的理解自主生成新颖、类似于人类的输出的方法。这可以采用图像、文本、音乐或甚至是代码的形式呈现。

 

什么是生成式 AI?

生成式 AI 是人工智能的一个子领域,专注于通过学习现有数据的模式创建新内容或生成解决方案。它是一种鼓励 AI 系统利用对数据结构的理解自主生成新颖、类似于人类的输出的方法。这可以采用图像、文本、音乐或甚至是代码的形式呈现。

生成式 AI 的支柱:构建模块

深度学习生成式 AI 利用深度学习技术来理解和解释复杂的数据结构。它使用神经网络,特别是生成式对抗网络(GAN)和变分自编码器(VAE),来模拟底层数据分布,从而可以生成逼真的内容。

自然语言处理(NLP)是生成式 AI 的一个关键组成部分,它允许系统理解、解释和生成可读的文本。NLP 技术,如标记化和情感分析,有助于训练 AI 模型理解上下文并生成连贯的输出。

强化学习在训练生成式 AI 模型方面起着至关重要的作用,使系统能够通过试错学习。通过不断优化其输出,AI 系统可以提高其性能并产生更高质量的结果。

生成式 AI 的架构

在其核心,生成式 AI 依赖于深度学习技术和人工神经网络,这些网络受到人类大脑结构和功能的启发。这些网络由多个层级的互联节点或神经元组成,处理和传输信息。

生成式 AI 模型通过学习训练数据中的模式和关系,使其能够基于所学特征生成新内容。两种主要的生成模型架构主导了生成模型的领域:生成式对抗网络(GAN)和变分自编码器(VAE)。

生成对抗网络(GANs):GANs由两个神经网络组成,生成器和鉴别器,它们在竞争中一起工作。生成器创建新内容,而鉴别器评估生成内容的质量,并将其与真实数据进行比较。通过这个过程,生成器逐渐改进其创建逼真和高质量内容的能力。

变分自编码器(VAEs):VAEs是另一种流行的生成模型架构,它结合了深度学习和概率建模的方面。VAEs使用编码器将数据压缩成低维表示,并使用解码器重构数据。通过从低维空间进行采样,VAEs可以生成类似于训练数据的新内容。

不同类型的AI模型和技术

除了传统技术外,现代生成式AI模型还使用深度学习和神经网络。深度学习是机器学习的一个子集,使用大型神经网络从数据中学习并进行预测。神经网络由相互连接的神经元组成,受到环境输入的激活。

这些技术用于创建可以解决各种问题的生成式AI模型,从自然语言处理到物体识别。生成式AI模型还可用于生成艺术、音乐和其他创意应用。

GPT-3(生成式预训练转换器3):GPT-3是一种先进的语言模型,可以基于给定提示生成类似人类的文本。它依赖于Transformer架构,可以有效地处理大规模语言数据。GPT-3因其在广泛应用中创建连贯且上下文相关的文本能力而受到广泛关注。

DALL-E:由OpenAI开发,DALL-E是一种生成式模型,可以根据文本描述创建原始图像。它将GPT-3的能力与图像生成技术相结合,使其能够生成与输入文本相匹配的视觉想象力极强的图像。

强化学习:虽然它本身不是生成式模型,但强化学习是一种可以与生成式模型结合使用来优化其性能的人工智能技术。在强化学习中,AI代理通过与环境交互并接收奖励或惩罚的反馈来学习做出决策。这种方法可用于微调生成式模型,提高其创建高质量内容的能力。

生成式人工智能在我们的生活和工作中的应用

生成式人工智能越来越成为我们生活和工作中不可或缺的一部分。从医疗保健到金融领域,越来越多的人工智能模型被用于解决复杂的问题和自动化流程。

随着生成式人工智能的广泛应用,也出现了一些必须解决的挑战。保护用户数据和隐私至关重要;潜在的数据泄露和个人信息的滥用可能会带来灾难性的后果。同样,生成式人工智能模型中可能引入偏见,这可能会带来不道德的影响。

生成式人工智能也对就业市场产生了影响,特别是对软件工程师和其他相关领域。自动化和其他生成式人工智能模型变得越来越复杂,导致某些工作被替代。为了缓解这种情况,软件工程师应该注重提升自己的技能,并转入其他工作市场。

代码生成是生成式人工智能的另一个令人兴奋的应用,它可以帮助开发人员更快速、更有效地编写代码。通过学习现有代码库,人工智能系统可以生成代码片段甚至整个应用程序,减少软件开发所需的时间和精力。

设计和原型制作受益于生成式人工智能的广泛应用,因为它允许设计师快速探索多种设计变化。这加速了设计过程,节省了资源,并激发了颠覆性的想法,重新定义了我们周围的世界。

在药物研发和材料科学中,生成式人工智能具有带来变革的潜力。通过生成新型分子结构并分析其性质,人工智能技术可以帮助研究人员以前所未有的效率确定有前途的新化合物和材料,为改变人类生活带来希望。

相关文章
|
11天前
|
存储 人工智能 弹性计算
阿里云弹性计算_加速计算专场精华概览 | 2024云栖大会回顾
2024年9月19-21日,2024云栖大会在杭州云栖小镇举行,阿里云智能集团资深技术专家、异构计算产品技术负责人王超等多位产品、技术专家,共同带来了题为《AI Infra的前沿技术与应用实践》的专场session。本次专场重点介绍了阿里云AI Infra 产品架构与技术能力,及用户如何使用阿里云灵骏产品进行AI大模型开发、训练和应用。围绕当下大模型训练和推理的技术难点,专家们分享了如何在阿里云上实现稳定、高效、经济的大模型训练,并通过多个客户案例展示了云上大模型训练的显著优势。
|
15天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
6天前
|
并行计算 前端开发 物联网
全网首发!真·从0到1!万字长文带你入门Qwen2.5-Coder——介绍、体验、本地部署及简单微调
2024年11月12日,阿里云通义大模型团队正式开源通义千问代码模型全系列,包括6款Qwen2.5-Coder模型,每个规模包含Base和Instruct两个版本。其中32B尺寸的旗舰代码模型在多项基准评测中取得开源最佳成绩,成为全球最强开源代码模型,多项关键能力超越GPT-4o。Qwen2.5-Coder具备强大、多样和实用等优点,通过持续训练,结合源代码、文本代码混合数据及合成数据,显著提升了代码生成、推理和修复等核心任务的性能。此外,该模型还支持多种编程语言,并在人类偏好对齐方面表现出色。本文为周周的奇妙编程原创,阿里云社区首发,未经同意不得转载。
|
11天前
|
人工智能 运维 双11
2024阿里云双十一云资源购买指南(纯客观,无广)
2024年双十一,阿里云推出多项重磅优惠,特别针对新迁入云的企业和初创公司提供丰厚补贴。其中,36元一年的轻量应用服务器、1.95元/小时的16核60GB A10卡以及1元购域名等产品尤为值得关注。这些产品不仅价格亲民,还提供了丰富的功能和服务,非常适合个人开发者、学生及中小企业快速上手和部署应用。
|
6天前
|
人工智能 自然语言处理 前端开发
用通义灵码,从 0 开始打造一个完整APP,无需编程经验就可以完成
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。本教程完全免费,而且为大家准备了 100 个降噪蓝牙耳机,送给前 100 个完成的粉丝。获奖的方式非常简单,只要你跟着教程完成第一课的内容就能获得。
|
1天前
|
云安全 存储 弹性计算
|
22天前
|
自然语言处理 数据可视化 前端开发
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
合合信息的智能文档处理“百宝箱”涵盖文档解析、向量化模型、测评工具等,解决了复杂文档解析、大模型问答幻觉、文档解析效果评估、知识库搭建、多语言文档翻译等问题。通过可视化解析工具 TextIn ParseX、向量化模型 acge-embedding 和文档解析测评工具 markdown_tester,百宝箱提升了文档处理的效率和精确度,适用于多种文档格式和语言环境,助力企业实现高效的信息管理和业务支持。
3965 5
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
|
11天前
|
算法 安全 网络安全
阿里云SSL证书双11精选,WoSign SSL国产证书优惠
2024阿里云11.11金秋云创季活动火热进行中,活动月期间(2024年11月01日至11月30日)通过折扣、叠加优惠券等多种方式,阿里云WoSign SSL证书实现优惠价格新低,DV SSL证书220元/年起,助力中小企业轻松实现HTTPS加密,保障数据传输安全。
534 3
阿里云SSL证书双11精选,WoSign SSL国产证书优惠
|
10天前
|
数据采集 人工智能 API
Qwen2.5-Coder深夜开源炸场,Prompt编程的时代来了!
通义千问团队开源「强大」、「多样」、「实用」的 Qwen2.5-Coder 全系列,致力于持续推动 Open Code LLMs 的发展。
|
17天前
|
安全 数据建模 网络安全
2024阿里云双11,WoSign SSL证书优惠券使用攻略
2024阿里云“11.11金秋云创季”活动主会场,阿里云用户通过完成个人或企业实名认证,可以领取不同额度的满减优惠券,叠加折扣优惠。用户购买WoSign SSL证书,如何叠加才能更加优惠呢?
998 3