数据中心同步计时的关键作用

简介: 数据中心同步计时的关键作用

数据中心向各个位置传输信息的速度和一致性令人惊叹。数据中心的服务器每秒相互通信数百万次,处理必须精确计时的关键事务。计算机有内部时钟来跟踪时间,但这些时钟彼此之间不断漂移。如果没有建立机制来持续同步内部时钟,则由于这些差异而导致数据损坏或丢失的可能性会增加。

同步计时的重要性在数据中心一直很普遍,但现在人们的担忧是,计算环境比以往任何时候都更加分散、互联和复杂。此外,云使用量的增加意味着需要建立更多的数据中心来支持它。这种需求导致更多设施位于连接环境具有挑战性的偏远地区。为了应对这些变化,数据中心运营商需要考虑如何提高计时同步弹性并确保数据完整性。

什么是数据中心计时?它是如何工作的?

网络时间协议(NTP)和精确时间协议(PTP)是两种基于网络的标准,旨在帮助更新和同步计算机内部时钟与我们的全球计时标准协调世界时(UTC)。

然而,这些计时标准依赖于基于数据包的随机路由互联网连接来与时间服务器进行通信。它们还容易受到以太网传输中常见的网络抖动问题的影响。

网络时间标准通常令人满意,但对于现代计算环境中越来越普遍的高速通信来说,更高的精度往往是必要的。除了刚才提到的网络传输的NTP和PTP之外,在数据中心提供精确计时的其他方法包括GNSS接收器和超稳定时钟。它们各有利弊,但一般来说,GNSS被认为是准确性和成本意识可扩展性的最佳组合。

全球导航卫星系统(GNSS)是指一组卫星,它们从太空发出信号,将时间数据传输到GNSS接收器。全球定位系统(GPS)就是GNSS的一个例子。它以高精度原子钟为基础,这些系统中的每个卫星都会同时发送精确的时间信号。这些信号用于对接收器的位置进行三角测量。

与NTP相比,GNSS提供的计时信息具有多项优势,包括可以在任何有清晰天空视野的地方使用,并且不依赖互联网连接来接收计时数据。GNSS的最大障碍是需要清晰的天空视野,而数据中心建在山区附近的偏远地区使这一障碍更加严重,但光纤技术可以帮助克服这一障碍。

光纤如何解决日益严重的时间同步问题?

GNSS通过1.1GHz至1.6GHz之间的射频(RF)与数据中心通信。在大多数数据中心,定时分配系统使用同轴电缆将数据从天线传输到其服务器。当数据中心天线与GNSS接收器之间的距离超过30-50米时,信号会衰减到无法使用的水平。

利用光纤电缆可以提高通信的弹性,因为它的衰减比同轴电缆低几个数量级。这使得光纤射频(RFoF)网络更加高效,并且可以从少数天线站点向整个数据中心提供GPS计时。

例如,标准RFoF架构可以通过单个天线向500多个端点提供可用的GPS计时信号。这提供了并行计时信号,可用于增强和补充来自互联网的NTP和PTP计时信号。一旦RF信号转换为光信号,就可以通过光纤分路器被动地分路,以传送到多个接收器。

确保GPS定时分发解决方案正确的第二个要素是部署双冗余。数据中心可以安装额外的备份,以便在发生故障时接收信号,而不是部署带有RF开关的单个光接收器。

这种完全冗余的GPS-over-fiber架构提供了无缝、可靠且面向未来的模拟GPS计时集成。它还消除了系统中的任何单点故障,以确保即使发生硬件故障,计时标准仍可正常运行。

更进一步说,还可以利用所有数据中心的网络管理系统从单个远程位置实时监控所有GPS计时解决方案。

随着世界越来越依赖计算机和数据中心之间精确定时的交易交换,人们越来越关注定时同步的可靠性和可靠性。它对于维护数据中心的可靠性、安全性和性能至关重要,尤其是在当今日益复杂和互联的计算环境中。

相关文章
|
2月前
|
安全 物联网 定位技术
2G网络的逐渐关闭和基站撤销,对车联网的影响
车联网作为汽车与现代信息技术融合的产物,其发展和运营高度依赖于通信网络的支持。在当前的车联网体系中,由于成本、覆盖率和数据需求等多方面因素,2G设备仍然占据一定的比例。然而,随着全球范围内2G网络的逐渐关闭和基站撤销,车联网不可避免地会受到一定影响。以下是对这一影响的详细分析:
|
6月前
|
网络协议 程序员 网络安全
掌握 SOME/IP :事件通知 构建高效通信系统的关键技术
掌握 SOME/IP :事件通知 构建高效通信系统的关键技术
372 0
|
NoSQL Java 应用服务中间件
时间驱动:探索计时器方案和革命性的时间轮技术
本文将带领你深入了解计时器的原理和应用场景,并详细介绍时间轮技术的革命性特点。文章首先解释了计时器的概念和重要性,以及在各种应用中的广泛应用,如任务调度、事件触发和性能监控等。接着,文章引入了时间轮作为一种创新的时间管理工具,其能够以环形结构高效地管理和触发定时任务。你将深入了解时间轮的工作原理、数据结构和相关算法,以及如何利用时间轮提高应用程序的性能和响应能力。
113 0
|
算法 安全 Linux
高性能网络 SIG 月度动态:推动 virtio 支持动态中断调节及更灵活的分流机制
高性能网络 SIG 月度动态送达,一键了解 8 月各项目进展。
【并发技术02】传统线程技术中的定时器技术
【并发技术02】传统线程技术中的定时器技术
|
编解码 缓存 监控
【韧性设计】节流模式
【韧性设计】节流模式
|
机器学习/深度学习 传感器 资源调度
基于天牛须算法的计及需求响应孤岛微电网优化调度附Matlab代码
基于天牛须算法的计及需求响应孤岛微电网优化调度附Matlab代码
|
存储 缓存 算法
能量收集通信 | 带你读《5G系统关键技术详解》之五
本书深入介绍了 5G 无线网络的协议、网络架构和技术,包括无线接入网络、移动边 缘计算、全双工、大规模 MIMO、毫米波、NOMA、物联网、M2M 通信、D2D 通信、 移动数据分流、干扰抑制技术、无线资源管理、可见光通信和智能数据定价等关键主题。
能量收集通信 | 带你读《5G系统关键技术详解》之五
|
芯片 知识图谱 SoC
中断实时性及处理技术简介
本文为RISC-V知识图谱系列中“处理器”主题的系列内容,主要介绍CPU处理外部事件的中断技术。
468 0
|
数据挖掘 5G 调度
前传感知的协作传输和接收之下行链路 | 带你读《5G系统关键技术详解》之十三
在当前的 3G/4G 蜂窝网络中,每个被调度的用户由一个基站服务并且接收到来自所 有相邻基站的干扰。C-RAN 架构的优点来自多个 RRH 协同服务用户的能力,从而小化干扰的影响。
前传感知的协作传输和接收之下行链路 | 带你读《5G系统关键技术详解》之十三