阿里云百炼上线Qwen2.5-Turbo模型,可支持100万超长上下文

简介: Qwen2.5-Turbo已上线,支持100万超长上下文,相当于100万个英文单词或150万个汉字。该模型在多个长文本任务评测集中表现出色,超越GPT-4,同时在推理速度上实现4.3倍提升。限时免费赠送1000万tokens额度,欢迎体验。

模型上新

Qwen2.5-Turbo上线🔗阿里云百炼平台,模型上下文长度扩展至百万tokens ,限时免费赠送1000万tokens额度。 image.jpeg

模型特点

Qwen2.5-Turbo是通义千问团队回应社区对处理更长序列需求推出的全新版本模型。该模型支持100万超长上下文,相当于100万个英文单词或150万个汉字。


image.png

模型表现

全新的Qwen2.5-Turbo在1M长度的超长文本检索(Passkey Retrieval)务中的准确率可达到100%,在长文本评测集RULER上获得93.1分,超越GPT-4在LV-Eval、LongBench-Chat等更加接近真实场景的长文本任务中,Qwen2.5-Turbo在多数维度超越了GPT-4o-mini;此外,在MMU、LiveBench等短文本基准上Qwen2.5-Turbo的表现也非常优秀,在大部分任务上的表现显著超越之前上下文长度为1M tokens的开源模型。

image.png

image.png

Qwen2.5-Turbo在长文本、短文本任务评测集上均表现优秀

在推理速度方面,通义千问团队利用稀疏注意力机制将注意力部分的计算量压缩了约12.5倍,将处理1M tokens上下文时的首字返回时间从4.9分钟降低到68秒实现了4.3倍的速度提升。

image.jpeg

Qwen2.5-Turbo推理速度可提升4.3

Qwen2.5-Turbo可应用于长篇小说深入理解、仓库级别代码助手、多篇论文阅读等场景,可一次性处理10本长篇小说,150小时的演讲稿,3万行代码。

API调用方式

最新支持的1M tokens的Qwen2.5-Turbo的使用方法,和Qwen API的标准用法一致,并且与OpenAI API兼容。 下面是一个简单的Python调用示例

注意:需要将环境变量YOUR_API_KEY设置为你的API Key)

import os

from openai import OpenAI

# 读取长文本文件
with open("example.txt", "r", encoding="utf-8") as f:
    text = f.read()
user_input = text + "\n\nSummarize the above text."

client = OpenAI(
    api_key=os.getenv("YOUR_API_KEY"),
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)

completion = client.chat.completions.create(
    model="qwen-turbo-latest",
    messages=[
      {'role': 'system', 'content': 'You are a helpful assistant.'},
      {'role': 'user', 'content': user_input},
    ],
)

print(completion.choices[0].message)

演示实例

针对于长篇小说理解

🔗长篇小说理解演示视频


针对于代码仓库理解

🔗代码仓库理解演示视频


针对于多篇论文理解

🔗多篇论文理解演示视频


此外,阿里云百炼已上线Qwen、Llama、ChatGLM等超200款国内外主流开源和闭源大模型,用户可选择直接调用、训练微调或打造RAG应用。目前,一汽、金山、哈啰集团、国家天文台等超30万企业和机构在使用阿里云百炼。抓紧去体验吧~


欢迎大家在评论区交流探讨调用通义千问-Turbo-2024-11-01模型的体验与经验 。如果您在体验过程中有遇到什么问题需要我们解答,可以在评论区中留言探讨或是加入我们的官方支持群(群号:77600022533)进行交流反馈!

1732159465607.png


阿里云百炼官网网址

阿里云百炼控制台入口

相关文章
|
6月前
|
机器学习/深度学习 人工智能 算法
通义千问Qwen-72B-Chat大模型在PAI平台的微调实践
本文将以Qwen-72B-Chat为例,介绍如何在PAI平台的快速开始PAI-QuickStart和交互式建模工具PAI-DSW中高效微调千问大模型。
|
缓存 达摩院 Kubernetes
数据缓存系列分享(六):通义千问Qwen-14B大模型快速体验
阿里达摩院近期对通义千问大模型 Qwen-14B 进行了开源(之前开源的是Qwen-7B模型),目前在ModelScope和HuggingFace上均可直接下载。关于Qwen-7B的搭建可以参考我们之前的文章:数据缓存系列分享(五):开源大语言模型通义千问快速体验版,本文将使用一样的方式打开Qwen-14B,快速体验一下。
1546 0
数据缓存系列分享(六):通义千问Qwen-14B大模型快速体验
|
2月前
|
API 云栖大会
通义千问升级旗舰模型Qwen-Max,性能接近GPT-4o
通义旗舰模型Qwen-Max全方位升级,性能接近GPT-4o
999 11
|
6月前
|
物联网 测试技术 API
LLM 大模型学习必知必会系列(九):Agent微调最佳实践,用消费级显卡训练属于自己的Agent!
LLM 大模型学习必知必会系列(九):Agent微调最佳实践,用消费级显卡训练属于自己的Agent!
LLM 大模型学习必知必会系列(九):Agent微调最佳实践,用消费级显卡训练属于自己的Agent!
|
21天前
|
缓存 自然语言处理 并行计算
基于NVIDIA A30 加速卡推理部署通义千问-72B-Chat测试过程
本文介绍了基于阿里云通义千问72B大模型(Qwen-72B-Chat)的性能基准测试,包括测试环境准备、模型部署、API测试等内容。测试环境配置为32核128G内存的ECS云主机,配备8块NVIDIA A30 GPU加速卡。软件环境包括Ubuntu 22.04、CUDA 12.4.0、PyTorch 2.4.0等。详细介绍了模型下载、部署命令及常见问题解决方法,并展示了API测试结果和性能分析。
847 1
|
2月前
|
文字识别 自然语言处理 数据可视化
Qwen2.5 全链路模型体验、下载、推理、微调、部署实战!
在 Qwen2 发布后的过去三个月里,许多开发者基于 Qwen2 语言模型构建了新的模型,并提供了宝贵的反馈。在这段时间里,通义千问团队专注于创建更智能、更博学的语言模型。今天,Qwen 家族的最新成员:Qwen2.5系列正式开源
Qwen2.5 全链路模型体验、下载、推理、微调、部署实战!
|
1月前
|
Shell Docker Python
LLM-02 大模型 本地部署运行 ChatGLM3-6B(13GB) 双卡2070Super8GB 环境配置 单机多卡 基于LLM-01章节 继续乘风破浪 为大模型微调做准备
LLM-02 大模型 本地部署运行 ChatGLM3-6B(13GB) 双卡2070Super8GB 环境配置 单机多卡 基于LLM-01章节 继续乘风破浪 为大模型微调做准备
47 1
|
3月前
|
编解码 JSON 自然语言处理
Qwen2-VL 全链路模型体验、下载、推理、微调实战!
经过了一年的不懈努力,今天通义千问团队对 Qwen-VL 模型进行重大更新——推出 Qwen2-VL。那么Qwen2-VL 有什么新功能呢?一起来看一下吧
Qwen2-VL 全链路模型体验、下载、推理、微调实战!
|
3月前
|
人工智能 自然语言处理 API
阿里云百炼上线FLUX文生图模型中文优化版,可免费调用!
阿里云百炼上线FLUX文生图模型中文优化版,可免费调用!
421 6
|
3月前
|
Linux 测试技术 API
Ollama+Qwen2,轻松搭建支持函数调用的聊天系统
本文介绍如何通过Ollama结合Qwen2,搭建OpenAI格式的聊天API,并与外部函数结合来拓展模型的更多功能。

热门文章

最新文章