【一步步开发AI运动小程序】七、进行运动计时、计数

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: 随着AI技术的发展,阿里体育推出的“乐动力”、“天天跳绳”等APP,使云上运动会、AI体育指导等概念备受关注。本文将引导您从零开始,利用“云智AI运动识别小程序插件”,在小程序中实现类似功能。通过插件的`sports`和`calc`命名空间,可轻松实现运动检测、计时计数等功能。示例代码展示了如何创建并使用俯卧撑运动分析器,以及如何通过摄像头捕获图像进行人体识别和运动分析。敬请期待后续关于姿态分析的内容。

随着人工智能技术的不断发展,阿里体育等IT大厂,推出的“乐动力”、“天天跳绳”AI运动APP,让云上运动会、线上运动会、健身打卡、AI体育指导等概念空前火热。那么,能否将这些在APP成功应用的场景搬上小程序,分享这些概念的红利呢?本系列文章就带您一步一步从零开始开发一个AI运动小程序,本系列文章将使用“云智AI运动识别小程序插件”,请先行在微信服务市场官网了解详情。

一、插件运动检测分析的流程

1.1、相关核心命名空间

插件关于姿态、运动检测的能力,都包含在calcsports两个命名空间下。其中sports命名空间下包含了所有的内置运动分析器类和运动检测相关计时、计数的核心逻辑抽象;calc命名空间下包含了人体姿态分析的角度、垂直、水平、视角等规则计算器、姿态相似度和关键点追踪等能力,sports也是基于此能力实现。

1.2、运动分析的过程

运动分析的过程,便是逐帧分析人体结果,当捕捉符合到要求的姿态动作,便触发计时、计数回调。UI便可以基于此回调与用户进行交互。

二、获取所有的内置运动

sports.SportBase是运动分析器抽象基类,实现了基本的计数、计时逻辑,其中SPORTS静态属性包含了所有的插件内置运动。

const SportBase = AiSport.sports.SportBase;
console.log(SportBase.SPORTS);
//输出结果
//0: {key: "Rope-Skipping", name: "跳绳"}
//1: {key: "Jumping-Jack", name: "开合跳"}
//2: {key: "Sit-Up", name: "仰卧起坐"}
//3: {key: "Push-Up", name: "俯卧撑"}
//4: {key: "Squat", name: "深蹲起"}
//5: {key: "Plank", name: "平板支撑"}
//6: {key: "Squat-Horse", name: "马步蹲"}

二、创建一个指定的运动分析器

//调用SportBase.create静态方法,创建一个俯卧撑运动分析器实例
const AiSport = requirePlugin("aiSport");
const SportBase = AiSport.sports.SportBase;
const sport = SportBase.create('Push-Up');
console.log(sport);

三、执行运动分析检测


//创建俯卧撑运动分析器
const AiSport = requirePlugin("aiSport");
const SportBase = AiSport.sports.SportBase;
const sport = SportBase.create('Push-Up');
sport.onTiCK = (cnt, times) => {
   
    console.log('运动计数变化');
    console.log(cnt, times);
};

//抽帧
const context = wx.createCameraContext();
const listener = context.onCameraFrame((frame) => {
   
    const iamge = {
   
        width: Number(frame.width),
        height: Number(frame.height),
        rawData: frame.data
    };

    //人体识别
    humanDetection.detectionAsync(image).then(human=>{
   

        //将人体识别结果推入运动分析器
        sport.pushing(human);

    });
});
listener.start();

下篇将为您介绍姿态分析,敬请期待...

相关文章
|
12天前
|
人工智能 编解码 算法
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
本文介绍了通义灵码2.0 AI程序员在嵌入式开发中的实战应用。通过安装VS Code插件并登录阿里云账号,用户可切换至DeepSeek V3模型,利用其强大的代码生成能力。实战案例中,AI程序员根据自然语言描述快速生成了C语言的base64编解码算法,包括源代码、头文件、测试代码和CMake编译脚本。即使在编译错误和需求迭代的情况下,AI程序员也能迅速分析问题并修复代码,最终成功实现功能。作者认为,通义灵码2.0显著提升了开发效率,打破了编程语言限制,是AI编程从辅助工具向工程级协同开发转变的重要标志,值得开发者广泛使用。
7862 67
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
|
8天前
|
机器学习/深度学习 人工智能 编解码
阿里开源AI视频生成大模型 Wan2.1:14B性能超越Sora、Luma等模型,一键生成复杂运动视频
Wan2.1是阿里云开源的一款AI视频生成大模型,支持文生视频和图生视频任务,具备强大的视觉生成能力,性能超越Sora、Luma等国内外模型。
386 2
阿里开源AI视频生成大模型 Wan2.1:14B性能超越Sora、Luma等模型,一键生成复杂运动视频
|
13天前
|
人工智能 DataWorks 大数据
大数据AI一体化开发再加速:DataWorks 支持GPU类型资源
大数据开发治理平台 DataWorks 的Serverless资源组支持GPU资源类型,以免运维、按需付费、弹性伸缩的Serverless架构,将大数据处理与AI开发能力无缝融合。面向大数据&AI协同开发场景,DataWorks提供了交互式开发和分析工具Notebook。开发者在创建个人开发环境时,可以选择GPU类型的资源作为Notebook运行环境,以支持进行高性能的计算工作。本教程将基于开源多模态大模型Qwen2-VL-2B-Instruct,介绍如何使用 DataWorks Notebook及LLaMA Factory训练框架完成文旅领域大模型的构建。
124 24
|
5天前
|
人工智能 前端开发 算法
AI程序员全面上线!10分钟就能完成整个开发过程!
AI程序员全面上线!10分钟就能完成整个开发过程!
|
6天前
|
人工智能 自然语言处理 小程序
用户说 | 文科生的我用DeepSeek+AI程序员半小时开发了一个小程序
用户说 | 文科生的我用DeepSeek+AI程序员半小时开发了一个小程序
用户说 | 文科生的我用DeepSeek+AI程序员半小时开发了一个小程序
|
8天前
|
人工智能 Java 数据处理
Java高级应用开发:基于AI的微服务架构优化与性能调优
在现代企业级应用开发中,微服务架构虽带来灵活性和可扩展性,但也增加了系统复杂性和性能瓶颈。本文探讨如何利用AI技术,特别是像DeepSeek这样的智能工具,优化Java微服务架构。AI通过智能分析系统运行数据,自动识别并解决性能瓶颈,优化服务拆分、通信方式及资源管理,实现高效性能调优,助力开发者设计更合理的微服务架构,迎接未来智能化开发的新时代。
|
8天前
|
JSON 缓存 小程序
微信小程序组件封装与复用:提升开发效率
本文深入探讨了微信小程序的组件封装与复用,涵盖组件的意义、创建步骤、属性与事件处理,并通过自定义弹窗组件的案例详细说明。组件封装能提高代码复用性、开发效率和可维护性,确保UI一致性。掌握这些技能有助于构建更高质量的小程序。
|
2月前
|
移动开发 小程序
thinkphp+uniapp开发的多端商城系统源码/H5/小程序/APP支持DIY模板直播分销
thinkphp+uniapp开发的多端商城系统源码/H5/小程序/APP支持DIY模板直播分销
46 0
|
4月前
|
小程序 前端开发 JavaScript
在线课堂+工具组件小程序uniapp移动端源码
在线课堂+工具组件小程序uniapp移动端源码
94 0
在线课堂+工具组件小程序uniapp移动端源码
|
5月前
|
移动开发 小程序 数据可视化
基于npm CLI脚手架的uniapp项目创建、运行与打包全攻略(微信小程序、H5、APP全覆盖)
基于npm CLI脚手架的uniapp项目创建、运行与打包全攻略(微信小程序、H5、APP全覆盖)
644 3

热门文章

最新文章