深度学习中的卷积神经网络(CNN)入门

简介: 【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。

在深度学习的浩瀚海洋中,卷积神经网络(CNN)无疑是最闪耀的明星之一,特别是在图像处理和视觉识别任务中表现出色。CNN通过模拟人类视觉系统的工作方式,能够有效地从图像中提取特征并进行分类。
CNN的核心在于它的卷积层,池化层和全连接层。每一层都扮演着不同的角色,共同协作完成复杂的图像处理任务。
首先,让我们聚焦于卷积层。卷积层的主要任务是特征提取。在这一层中,小的过滤器(或称为卷积核)会在整张图片上滑动,通过计算过滤器和图像区域之间的点积来生成新的特征图。每个特征图都专注于检测图像中的特定模式,如边缘或纹理。
接下来是池化层,它通常紧随卷积层之后。池化层的目的是为了减少数据的空间大小,从而减少参数数量和计算量。最常见的池化操作是最大池化,它会取区域内的最大值作为输出,这样即使图像有所平移,池化后的输出也保持不变,增加了模型的不变性。
最后是全连接层,它是CNN结构中的“分类器”。在前几层中提取的特征被展平并输入到全连接层中,这里的神经元与前层所有神经元进行全连接。全连接层的作用是基于学习到的特征进行分类决策。
现在,我们用一个简单的CNN模型代码示例来说明上述概念。假设我们使用Python及其深度学习库Keras来构建一个简单的CNN模型用于手写数字识别:

from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

model = Sequential()
# 添加一个卷积层,32个3x3过滤器,激活函数为relu
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
# 添加一个最大池化层,池化窗口为2x2
model.add(MaxPooling2D((2, 2)))
# 将卷积层的输出展平,连接到全连接层
model.add(Flatten())
# 添加一个全连接层,128个神经元
model.add(Dense(128, activation='relu'))
# 添加输出层,10个神经元对应10个类别(手写数字0-9)
model.add(Dense(10, activation='softmax'))

# 编译模型,准备训练
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

以上代码定义了一个简单的CNN模型,包括一个卷积层,一个池化层,一个全连接层和一个输出层。这个模型可以用于识别手写数字,展示了CNN在图像分类问题上的强大能力。
虽然CNN的概念可能在初学时显得有些复杂,但通过逐步学习和实践,任何人都可以掌握这些强大的工具。正如爱因斯坦所说:“学习的不是知识的数量,而是判断力的培养。”通过理解CNN的工作原理并亲手实践,你将能够开启深度学习的新篇章,探索更广阔的人工智能世界。

相关文章
|
9天前
|
机器学习/深度学习 编解码 自动驾驶
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
32 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
51 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
13天前
|
机器学习/深度学习 编解码 自动驾驶
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
41 16
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
13天前
|
机器学习/深度学习 存储
YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
38 15
YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
|
11天前
|
机器学习/深度学习
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
42 8
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
|
9天前
|
机器学习/深度学习 编解码 移动开发
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
28 5
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
|
13天前
|
机器学习/深度学习 编解码 移动开发
YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
23 7
YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
|
9天前
|
机器学习/深度学习
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
39 11
|
9天前
|
机器学习/深度学习 存储
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
30 0
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
86 17

热门文章

最新文章