ROS机器视觉入门:从基础到人脸识别与目标检测

本文涉及的产品
资源编排,不限时长
简介: 【11月更文挑战第9天】从本文开始,我们将开始学习ROS机器视觉处理,刚开始先学习一部分外围的知识,为后续的人脸识别、目标跟踪和YOLOV5目标检测做准备工作。

前言

从本文开始,我们将开始学习ROS机器视觉处理,刚开始先学习一部分外围的知识,为后续的人脸识别、目标跟踪和YOLOV5目标检测做准备工作。我采用的笔记本是联想拯救者游戏本,系统采用Ubuntu20.04,ROS采用noetic。

颜色编码格式,图像格式和视频压缩格式

(1)RGB和BGR:这是两种常见的颜色编码格式,分别代表了红、绿、蓝三原色。不同之处在于,RGB按照红、绿、蓝的顺序存储颜色信息,而BGR按照蓝、绿、红的顺序存储。

rgb8图像格式:常用于显示系统,如电视和计算机屏幕。
  RGB值以8 bits表示每种颜色,总共可以表示256×256×256=16777216种颜色。
  例如: (255,0,0) 表示红色,(0,255,0) 表示绿色,(0,0,255) 表示蓝色。
bgr8图像格式:由一些特定的硬件制造商采用,
  软件方面最著名的就是opencv,其默认使用BGR的颜色格式来处理图像。
  与RGB不同, (0,0,255) 在BGR中表示红色,(0,255,0) 仍然表示绿色,(255,0,0) 表示蓝色。

在自动驾驶里,使用rgb8图像格式的图像,一般称为原图,是数据量最大的格式,没有任何压缩。(2)(2)YUV:这是另一种颜色编码方法,与RGB模型不同的是,它将图像信息分解为亮度(Y)和色度(U和V)两部分。这种方式更接近于人类对颜色的感知方式。

Y:代表亮度信息,也就是灰阶值。
U:从色度信号中减去Y得到的蓝色信号的差异值。
V:从色度信号中减去Y得到的红色信号的差异值。

YUV颜色编码主要用在电视系统以及视频编解码标准中,在这些系统中,Y通道信息可以单独使用,这样黑白电视机也能接收和显示信号。而彩色信息则通过U和V两个通道传输,只有彩色电视机才能处理。这样设计兼容了黑白电视和彩色电视。YUV色彩空间相比RGB色彩空间,更加符合人眼对亮度和色彩的敏感度,在视频压缩时,可以按照人眼的敏感度对YUV数据进行压缩,以达到更高的压缩比。由于历史和技术的原因,YUV的标准存在多种,例如YUV 4:4:4、YUV 4:2:2和YUV 4:2:0等,这些主要是针对U和V通道的采样方式不同定义的。采样不同,对应的压缩比也不同。

(3)图像压缩格式

jpeg:Joint Photographic Experts Group,是一种常见的用于静态图像的损失性压缩格式,
  它特别适合于全彩色和灰度图片,被广泛使用。
  通常情况下,JPEG可以提供10:1到20:1的有损压缩比,根据图像质量自由调整。
png: Portable Network Graphics,PNG是一种无损压缩格式,主要使用了DEFLATE算法。
  由于这是无损压缩,所以解压缩图像可以完全恢复原始数据。
  被广泛应用于需要高质量图像的场景,如网页设计、艺术作品等。
bmp:Bitmap,BMP是Windows系统中常用的一种无压缩的位图图像格式,通常会创造出较大的文件。

位图(Bitmap)是一种常见的计算机图形,最小单位是像素,每个像素都包含一定量的信息,如颜色和亮度等。位图图像的一个主要特点就是,在放大查看时,可以看到图像的像素化现象,也就是我们常说的"马赛克"。BMP、JPEG、GIF、PNG等都是常见的位图格式。

(4)H264和H265:这是两个视频压缩格式,也是两种视频编解码标准。以1280*720的摄像头为例,如果是rgb8格式的原图,一帧图像的大小是:

3*1280*720=27648000字节,即2.7648MB

如果是一小时的视频,那将是非常大的数据量,对网络传输,数据存储,都是很大的压力。而H264通过种种帧间操作,可以达到10:1到50:1的压缩比,甚至更高。H265更进一步,压缩比更高,用来解决4K或8K视频的传输。

更具体的原理见:图像编码与 H264 基础知识在自动驾驶领域,图像数据也使用h264格式,主要用于数采和回放,控制数据量。

usb_cam

(1)linux针对摄像头硬件有一套Video for Linux内核驱动框架,对应提供的有命令行工具 v4l2-ctl (Video for Linux 2),可以查看摄像头硬件信息:

ls /dev/video0  //一般video0是笔记本自带摄像头设备文件
v4l2-ctl -d /dev/video0 --all

这里截取了部分关键信息,下面的usb_cam的launch文件将用到:

(2)usb_cam是ros里usb camera的软件包,一般称为ros摄像头驱动,但这是一个应用程序,其调用v4l2并通过ros topic发出图像数据。搞机器视觉,第一步就是要有图。安装并启动usb_cam,查看图像:

sudo apt-get install ros-noetic-usb-cam 
roslaunch usb_cam usb_cam-test.launch
rqt_image_view

usb_cam-test.launch:

<launch>
  <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
    //指定设备文件名,默认是/dev/video0
    <param name="video_device" value="/dev/video0" />
    // 宽和高分辨率 
    <param name="image_width" value="640" />
    <param name="image_height" value="480" />
    // 像素编码,可选值:mjpeg,yuyv,uyvy
    <param name="pixel_format" value="yuyv" />
    <param name="color_format" value="yuv422p" />
    // camera坐标系名
    <param name="camera_frame_id" value="usb_cam" />
    // IO通道,可选值:mmap,read,userptr,大数据量信息一般用mmap
    <param name="io_method" value="mmap"/>
  </node>
  <node name="image_view" pkg="image_view" type="image_view" respawn="false" output="screen">
    // 指定发出的topic名:/usb_cam/image_raw
    <remap from="image" to="/usb_cam/image_raw"/>
    <param name="autosize" value="true" />
  </node>
</launch>

(3)/usb_cam/image_raw的数据结构体:

rostopic info /usb_cam/image_raw
rosmsg show  sensor_msgs/Image
//消息头,每个topic都有
std_msgs/Header header  
  uint32 seq
  time stamp
  // 坐标系名
  string frame_id
// 高和宽分辨率
uint32 height
uint32 width
// 无压缩的图像编码格式,包括rgb8,YUV444
string encoding
// 图像数据的大小端存储模式
uint8 is_bigendian
// 一行图像数据的字节数量,作为步长参数
uint32 step
// 存储图像数据的柔性数组,大小是step*height
uint8[] data

/usb_cam/image_raw内容展示:

(4)/usb_cam/image_raw/compressed的数据结构体:

rostopic info /usb_cam/image_raw/compressed
rosmsg show sensor_msgs/CompressedImage
std_msgs/Header header
  uint32 seq
  time stamp
  string frame_id
// 压缩的图像编码格式,jpeg,png
string format
uint8[] data

/usb_cam/image_raw/compressed内容展示:

摄像头标定

标定引入

(1)Calibration:翻译过来就是校准和标定。(2)摄像头标定:Camera Calibration是计算机视觉中的一种关键技术,其目的是确定摄像头的内部参数(Intrinsic Parameters)和外部参数(Extrinsic Parameters)。

内部参数:包括焦距、主点坐标以及镜头畸变等因素。
  这些参数与相机本身的硬件有关,如镜头和图像传感器等,一般由厂家提供。
外部参数:摄像头相对于环境的位置和方向。
  例如,它可能描述了一个固定摄像头相对于周围环境的姿态或者安装位置。
  以汽车为例,外参包括各个摄像头之间的关系,摄像头与radar,摄像头与lidar的关系。

(3)汽车各种传感器的之间的相对位置和朝向,用3自由度的旋转矩阵和3自由度的平移向量表示,这些外参由整车厂自己标。一般整车下线之后,进入特定的房间,使用静态标靶、定位器的等高精度设备,完成Camera、radar、Lidar等传感器的标定,称之为产线标定,也叫做下线标定。

笔记本摄像头内参标定

这里我们使用标定常用的标靶图形,完成笔记本摄像头的内参标定。usb_cam可以使用内参标定,避免图像畸变。(1)安装标定功能包(ubuntu20.04+noetic)

sudo apt-get install ros-noetic-camera-calibration

(2)创建 robot_vision 软件包,并标定相关文件

cd ~/catkin_ws/src
catkin_create_pkg robot_vision cv_bridge image_transport sensor_msgs std_msgs geometry_msgs message_generation roscpp rospy
cd robot_vision 
mkdir doc launch
touch launch/cameta_calibration.launch

标定靶图片:

cameta_calibration.launch:

<launch>
  // 使用usb_cam包,发出/usb_cam/image_raw图像数据
  <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
    <param name="video_device" value="/dev/video0" />
    <param name="image_width" value="640" />
    <param name="image_height" value="480" />
    <param name="pixel_format" value="yuyv" />
    <param name="camera_frame_id" value="usb_cam" />
    <param name="io_method" value="mmap"/>
  </node>
  // 使用标定功能包,完成标定。
  // 参数中,8x6表示横向8个内部角点,竖向有6个
  // square 是每个棋盘格的边长
  // /usb_cam/image_raw是监听的图像topic
  <node
      pkg="camera_calibration"
      type="cameracalibrator.py"
      name="camera_calibration"
      output="screen"
      args="--size 8x6 --square 0.024 image:=/usb_cam/image_raw camera:=/usb_cam"
  />
</launch>

(3)编译并运行

cd ~/catkin_ws/
catkin_make --source src/robot_vision 
source devel/setup.bash
roslaunch robot_vision cameta_calibration.launch

不断晃动,直到COMMIT按键亮起,然后点击,即可生成标定文件,本人的路径为:/home/mm/.ros/camera_info/head_camera.yaml。

opencv和cv_bridge引入

(1)opencv和cv_bridge

安装opencv(ubuntu20.04+noetic):

sudo apt-get install ros-noetic-vision-opencv libopencv-dev python3-opencv

(2)opencv和cv_bridge的简单架构图如下:

根据这个图,在ros里,处理图像的流程一般是:

# 第一步:使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
  cv_image = cv_bridge.imgmsg_to_cv2(msg, "bgr8")
  # 第二步:使用opencv进行图像处理
  。。。
  
  # 第三步,再将opencv格式额数据转换成ros image格式的数据
  ros_image = cv_bridge.cv2_to_imgmsg(cv_image, "bgr8")

(3)在 上节的robot_vision包里,我们新增一个cv_bridge的小样例,主要功能是在捕捉到的图像上打个蓝色的圆标。

本文不深入讲解opencv,推荐一个资料:W3Cschool - OpenCV教程

cv_bridge_test.py:

#! /usr/bin/env python3
# -*- coding: utf-8 -*-
import rospy
import cv2
from functools import partial
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image
def image_cb(msg, cv_bridge, image_pub):
    # 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
    try:
        cv_image = cv_bridge.imgmsg_to_cv2(msg, "bgr8")
    except CvBridgeError as e:
        print(e)
    # 在opencv的显示窗口中绘制一个圆,作为标记
    # cv_image.shape返回一个元组,包含图像的行数(高度),列数(宽度)和通道数(通常是3个通道:BGR)
    (rows, cols, channels) = cv_image.shape
    # 当图像的宽度和高度都大于60时,才执行画圆标动作
    if cols > 60 and rows > 60:
      # 在计算机图像处理中,图像的原点(0,0)通常定义为图像的左上角。(60,60)是圆心的坐标。
      # 30是圆的半径。
      # (255,0,0)定义了圆的颜色。在OpenCV中,默认的颜色空间是BGR,所以这其实是绘制了一个蓝色的圆。
      # -1表示填充圆。如果这个值是正数,则代表绘制的圆的线宽;如果是负数,则代表填充该圆。
        cv2.circle(cv_image, (60,60), 30, (255,0,0), -1)
    # 使用Opencv的接口,显示Opencv格式的图像
    cv2.imshow("ycao: opencv image window", cv_image)
    cv2.waitKey(3)
    # 再将opencv格式额数据转换成ros image格式的数据发布
    try:
        image_pub.publish(cv_bridge.cv2_to_imgmsg(cv_image, "bgr8"))
    except CvBridgeError as e:
        print(e)
def main():
    rospy.init_node("cv_bridge_test")
    rospy.loginfo("starting cv_bridge_test node")
    bridge = CvBridge()
    image_pub = rospy.Publisher("/cv_bridge_image", Image, queue_size=1)
    bind_image_cb = partial(image_cb, cv_bridge=bridge, image_pub=image_pub)
  // 订阅/usb_cam/image_raw,然后再回调函数里处理图像,并发布出来
    rospy.Subscriber("/usb_cam/image_raw", Image, bind_image_cb)
    rospy.spin()
    cv2.destroyAllWindows()
if __name__ == "__main__":
    main()

cv_bridge_test.launch

<launch>
  <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
    <param name="video_device" value="/dev/video0" />
    <param name="image_width" value="640" />
    <param name="image_height" value="480" />
    <param name="pixel_format" value="yuyv" />
    <param name="camera_frame_id" value="usb_cam" />
    <param name="io_method" value="mmap"/>
  </node>
  <node
      pkg="robot_vision"
      type="cv_bridge_test.py"
      name="cv_bridge_test"
      output="screen"
  />
  <node
      pkg="rqt_image_view"
      type="rqt_image_view"
      name="rqt_image_view"
      output="screen"
  />
</launch>

(4)编译并运行

cd ~/catkin_ws/
catkin_make --source src/robot_vision 
source devel/setup.bash
roslaunch robot_vision cv_bridge_test.launch

总结

本文主要系统介绍了机器视觉处理的外围知识,引入了opencv和cv_bridge,后面几篇文章,我们将用它们继续丰富 robot_vision 软件包。

相关实践学习
使用ROS创建VPC和VSwitch
本场景主要介绍如何利用阿里云资源编排服务,定义资源编排模板,实现自动化创建阿里云专有网络和交换机。
阿里云资源编排ROS使用教程
资源编排(Resource Orchestration)是一种简单易用的云计算资源管理和自动化运维服务。用户通过模板描述多个云计算资源的依赖关系、配置等,并自动完成所有资源的创建和配置,以达到自动化部署、运维等目的。编排模板同时也是一种标准化的资源和应用交付方式,并且可以随时编辑修改,使基础设施即代码(Infrastructure as Code)成为可能。 产品详情:https://www.aliyun.com/product/ros/
相关文章
|
1月前
|
Ubuntu 机器人 Linux
|
25天前
|
传感器 机器人 数据处理
ROS 编程入门的介绍
【10月更文挑战第13天】ROS(Robot Operating System)是一种开源的机器人软件框架,广泛用于机器人开发中。通过使用 ROS,开发者可以轻松创建和管理机器人应用程序。在本节中,我们将介绍如何创建一个 ROS 功能包并实现一些基本功能。
|
1月前
|
传感器 数据可视化 机器人
【ROS速成】半小时入门机器人ROS系统简明教程之可视化系统(三)
半小时入门机器人ROS系统简明教程之可视化系统
|
1月前
|
机器人
【ROS速成】半小时入门机器人ROS系统简明教程之安装测速(二)
半小时入门机器人ROS系统简明教程之安装测速
|
3月前
|
XML 存储 网络安全
ROS入门(二):launch文件解析
该文章是关于ROS入门的第二篇教程,详细解析了ROS中的launch文件,包括其运行方式、XML格式规范、标签使用、参数替代、条件属性以及通过简单和复杂案例来演示launch文件的使用,最后介绍了如何在参数服务器上设置参数。
ROS入门(二):launch文件解析
|
1月前
|
传感器 机器人 数据处理
ROS 编程入门的介绍
2.1 创建 ROS 功能包 ROS(Robot Operating System)是一种开源的机器人软件框架,广泛用于机器人开发中。通过使用 ROS,开发者可以轻松创建和管理机器人应用程序。在本节中,我们将介绍如何创建一个 ROS 功能包并实现一些基本功能。 2.1.1 使用 ROS 主题 ROS 主题(Topic)是一种发布/订阅机制,允许节点之间进行通信。每个节点可以发布主题消息或订阅主题消息来获取数据。以下是如何使用 ROS 主题的步骤: 创建功能包 首先,我们需要创建一个新的 ROS 功能包。在终端中运行以下命令: catkin_create_pkg de_ws my_r
|
2月前
|
传感器 机器人 数据处理
ROS 编程入门的介绍
2.1 创建 ROS 功能包 ROS(Robot Operating System)是一种开源的机器人软件框架,广泛用于机器人开发中。通过使用 ROS,开发者可以轻松创建和管理机器人应用程序。在本节中,我们将介绍如何创建一个 ROS 功能包并实现一些基本功能。 2.1.1 使用 ROS 主题 ROS 主题(Topic)是一种发布/订阅机制,允许节点之间进行通信。每个节点可以发布主题消息或订阅主题消息来获取数据。以下是如何使用 ROS 主题的步骤: 创建功能包 首先,我们需要创建一个新的 ROS 功能包。在终端中运行以下命令: catkin_create_pkg de_ws my_r
|
机器学习/深度学习 算法 决策智能
ubuntu16.04下ROS操作系统学习笔记(六 )机器视觉-摄像头标定-ROS+OpenCv-人脸识别-物体跟踪-二维码识别(下)
ubuntu16.04下ROS操作系统学习笔记(六 )机器视觉-摄像头标定-ROS+OpenCv-人脸识别-物体跟踪-二维码识别(下)
361 0
|
存储 机器学习/深度学习 编解码
ubuntu16.04下ROS操作系统学习笔记(六 )机器视觉-摄像头标定-ROS+OpenCv-人脸识别-物体跟踪-二维码识别(上)
ubuntu16.04下ROS操作系统学习笔记(六 )机器视觉-摄像头标定-ROS+OpenCv-人脸识别-物体跟踪-二维码识别(上)
415 0
|
传感器 JSON Ubuntu
ROS2 机器人操作系统入门和安装以及如何使用 .NET 进行开发
本文是 ROS2 入门的第一课,简单介绍了 ROS 系统,并演示了 ROS2 系统在 Ubuntu 22.04 中的安装(使用 gitee 和清华源)以及其中错误的解决。最后对其优势进行总结,为什么选择 ROS。最后介绍简单 Demo 和如何使用 .NET 接入的其中一种方式。
812 0
ROS2 机器人操作系统入门和安装以及如何使用 .NET 进行开发

热门文章

最新文章

推荐镜像

更多