SciPy 教程 之 SciPy 插值 3
SciPy 插值
什么是插值?
在数学的数值分析领域中,插值(英语:interpolation)是一种通过已知的、离散的数据点,在范围内推求新数据点的过程或方法。
简单来说插值是一种在给定的点之间生成点的方法。
例如:对于两个点 1 和 2,我们可以插值并找到点 1.33 和 1.66。
插值有很多用途,在机器学习中我们经常处理数据缺失的数据,插值通常可用于替换这些值。
这种填充值的方法称为插补。
除了插补,插值经常用于我们需要平滑数据集中离散点的地方。
如何在 SciPy 中实现插值?
SciPy 提供了 scipy.interpolate 模块来处理插值。
径向基函数插值
径向基函数是对应于固定参考点定义的函数。
曲面插值里我们一般使用径向基函数插值。
Rbf() 函数接受 xs 和 ys 作为参数,并生成一个可调用函数,该函数可以用新的 xs 调用。
实例
from scipy.interpolate import Rbf
import numpy as np
xs = np.arange(10)
ys = xs**2 + np.sin(xs) + 1
interp_func = Rbf(xs, ys)
newarr = interp_func(np.arange(2.1, 3, 0.1))
print(newarr)
输出结果为:
[6.25748981 6.62190817 7.00310702 7.40121814 7.8161443 8.24773402
8.69590519 9.16070828 9.64233874]