SciPy 教程 之 SciPy 插值 3

简介: 本教程介绍了SciPy中的插值方法,包括什么是插值及其在数据处理和机器学习中的应用。通过 `scipy.interpolate` 模块,特别是 `Rbf()` 函数,展示了如何实现径向基函数插值,以平滑数据集中的离散点。示例代码演示了如何使用 `Rbf()` 函数进行插值计算。

SciPy 教程 之 SciPy 插值 3

SciPy 插值

什么是插值?

在数学的数值分析领域中,插值(英语:interpolation)是一种通过已知的、离散的数据点,在范围内推求新数据点的过程或方法。

简单来说插值是一种在给定的点之间生成点的方法。

例如:对于两个点 1 和 2,我们可以插值并找到点 1.33 和 1.66。

插值有很多用途,在机器学习中我们经常处理数据缺失的数据,插值通常可用于替换这些值。

这种填充值的方法称为插补。

除了插补,插值经常用于我们需要平滑数据集中离散点的地方。

如何在 SciPy 中实现插值?

SciPy 提供了 scipy.interpolate 模块来处理插值。

径向基函数插值

径向基函数是对应于固定参考点定义的函数。

曲面插值里我们一般使用径向基函数插值。

Rbf() 函数接受 xs 和 ys 作为参数,并生成一个可调用函数,该函数可以用新的 xs 调用。

实例

from scipy.interpolate import Rbf
import numpy as np

xs = np.arange(10)
ys = xs**2 + np.sin(xs) + 1

interp_func = Rbf(xs, ys)

newarr = interp_func(np.arange(2.1, 3, 0.1))

print(newarr)

输出结果为:

[6.25748981 6.62190817 7.00310702 7.40121814 7.8161443 8.24773402
8.69590519 9.16070828 9.64233874]

目录
相关文章
|
22天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
46 8
|
22天前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
67 7
|
22天前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
47 4
|
22天前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
43 5
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之显著性检验:介绍显著性检验的基本概念、目的及在SciPy中的实现方法。通过scipy.stats模块进行显著性检验,包括正态性检验(使用偏度和峰度),并提供代码示例展示如何计算数据集的偏度和峰度。
39 2
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之 Scipy 显著性检验第9部分,介绍了显著性检验的基本概念、作用及原理,通过样本信息判断假设是否成立。着重讲解了使用scipy.stats模块进行显著性检验的方法,包括正态性检验中的偏度和峰度计算,以及如何利用normaltest()函数评估数据是否符合正态分布。示例代码展示了如何计算一组随机数的偏度和峰度。
34 1
|
2月前
|
BI Python
SciPy 教程 之 Scipy 显著性检验 8
本教程介绍SciPy中显著性检验的应用,包括如何利用scipy.stats模块进行显著性检验,以判断样本与总体假设间的差异是否显著。通过示例代码展示了如何使用describe()函数获取数组的统计描述信息,如观测次数、最小最大值、均值、方差等。
34 1
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 6
显著性检验是统计学中用于判断样本与总体假设间是否存在显著差异的方法。SciPy的scipy.stats模块提供了执行显著性检验的工具,如T检验,用于比较两组数据的均值是否来自同一分布。通过ttest_ind()函数,可以获取两样本的t统计量和p值,进而判断差异是否显著。示例代码展示了如何使用该函数进行T检验并输出结果。
31 1
|
3月前
|
数据可视化 IDE 开发工具
【Python篇】PyQt5 超详细教程——由入门到精通(中篇二)
【Python篇】PyQt5 超详细教程——由入门到精通(中篇二)
369 13
|
3月前
|
监控 数据可视化 搜索推荐
【Python篇】matplotlib超详细教程-由入门到精通(下篇)2
【Python篇】matplotlib超详细教程-由入门到精通(下篇)
49 8