大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)

简介: 本文详细解析了数据库、缓存、异步处理和Web性能优化四大策略,系统性能优化必知必备,大厂面试高频。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。

关注△mikechen的互联网架构△,10年+BAT架构经验倾囊相授


image.png

大家好,我是 mikechen | 陈睿

最近有同学去大厂,大厂重点考察了性能优化,比如:数据库性能优化如何来做?JVM性能调优怎么做?慢查询优化怎么做...等等问题。

我之前就讲过性能优化是必备技能,想拿到更好的薪资或者机会,懂性能优化那是相当的加分项啊。

下面我就针对以上问题,重点来谈谈这4大性能优化策略@mikechen

数据库如何做调优?

数据库的调优,总的来说分为以下三部分:

1.SQL调优
主要集中在索引、减少跨表与大数据join查询等。

2.数据库端架构设计优化

通过读写分离调整对数据库的写操作,通过垂直拆分以及水平拆分(分库分表)来解决数据库端连接池瓶颈等问题。

3.连接池调优

可以通过熟悉连接池的原理,以及具体的连接池监控数据,来不断调试出最终的连接池参数。

通过缓存来优化

目前分布式缓存已经比较成熟,常见的有redis、memcached等。

选型考虑

如果数据量小,并且不会频繁地增长又清空(这会导致频繁地垃圾回收),那么可以选择本地缓存。

具体的话,如果需要一些策略的支持(比如缓存满的逐出策略),可以考虑Ehcache;如不需要,可以考虑HashMap;如需要考虑多线程并发的场景,可以考虑ConcurentHashMap。

缓存是否会满,缓存满了怎么办?

对于一个缓存服务,理论上来说,随着缓存数据的日益增多,在容量有限的情况下,缓存肯定有一天会满的。如何应对?

① 给缓存服务,选择合适的缓存逐出算法,比如最常见的LRU。

② 针对当前设置的容量,设置适当的警戒值,比如10G的缓存,当缓存数据达到8G的时候,就开始发出报警,提前排查问题或者扩容。

③ 给一些没有必要长期保存的key,尽量设置过期时间。

数据请求改造为异步

使用场景

用户并不关心或者用户不需要立即拿到这些事情的处理结果,这种情况就比较适合用异步的方式处理,这里的原则就是能异步就异步。

常见做法

一种做法,是额外开辟线程,这里可以采用额外开辟一个线程或者使用线程池的做法,在IO线程(处理请求响应)之外的线程来处理相应的任务,在IO线程中让response先返回。

如果异步线程处理的任务设计的数据量非常巨大,那么可以引入阻塞队列BlockingQueue作进一步的优化。具体做法是让一批异步线程不断地往阻塞队列里扔数据,然后额外起一个处理线程,循环批量从队列里拿预设大小的一批数据,来进行批处理(比如发一个批量的远程服务请求),这样进一步提高了性能。

另一种做法,是使用消息队列(MQ)中间件服务,MQ天生就是异步的。

Web网站性能调优

1、尽可能减少HTTP请求:图片合并 (css sprites),Js脚本文件合并、css文件合并。

2、减少DNS查询

3、将css放在页面最上面,将js放在页面最下面

4、压缩js和css

减少文件体积,去除不必要的空白符、格式符、注释(即对代码进行格式化)

5、把js和css提取出来放在外部文件中

6、避免重定向

重定向就是用户请求的页面被转移到了别的地方,浏览器向服务请请求一个页面,服务器告诉浏览器请求的页面已经被转移到另外一个页面,并告知另一个页面地址,浏览器就再发送请求到重定向的地址。这样会增加服务器和浏览器之间的往返次数,影响网站性能。

重定向状态码有:301永久重定向 302临时重定向。304 not modified 并不是真的重定向,它是用来告诉浏览器get请求的文件在缓存中,避免重新下载。

7、使用Gzip压缩

8、使用CDN(内容分发网络)

JVM如何性能调优

什么时候调?

通过监控系统对一些机器关键指标(gc time、gc count、各个分代的内存大小变化、机器的Load值与CPU使用率、JVM的线程数等)的监控报警,也可以看gc log和jstat等命令的输出,再结合线上JVM进程服务的一些关键接口的性能数据和请求体验,基本上就能定位出当前的JVM是否有问题,以及是否需要调优。

调优工具

Jconsole,jProfile,VisualVM

Jconsole : jdk自带,功能简单,但是可以在系统有一定负荷的情况下使用。对垃圾回收算法有很详细的跟踪。详细说明参考这里

JProfiler:商业软件,需要付费。功能强大。详细说明参考这里

VisualVM:JDK自带,功能强大,与JProfiler类似。推荐。

如何调优?

观察内存释放情况、集合类检查、对象树

上面这些调优工具都提供了强大的功能,但是总的来说一般分为以下几类功能

堆信息查看

可查看堆空间大小分配(年轻代、年老代、持久代分配)

image.png

提供即时的垃圾回收功能

垃圾监控(长时间监控回收情况)

image.png

查看堆内类、对象信息查看:数量、类型等

对象引用情况查看

有了堆信息查看方面的功能,我们一般可以顺利解决以下问题:

  • 年老代年轻代大小划分是否合理
  • 内存泄漏
  • 垃圾回收算法设置是否合理

线程监控

image.png

线程信息监控:系统线程数量。

线程状态监控:各个线程都处在什么样的状态下

Dump线程详细信息:查看线程内部运行情况

死锁检查

热点分析

CPU热点:检查系统哪些方法占用的大量CPU时间

内存热点:检查哪些对象在系统中数量最大(一定时间内存活对象和销毁对象一起统计)

这两个东西对于系统优化很有帮助。我们可以根据找到的热点,有针对性的进行系统的瓶颈查找和进行系统优化,而不是漫无目的的进行所有代码的优化。

快照

快照是系统运行到某一时刻的一个定格。在我们进行调优的时候,不可能用眼睛去跟踪所有系统变化,依赖快照功能,我们就可以进行系统两个不同运行时刻,对象(或类、线程等)的不同,以便快速找到问题

举例说,我要检查系统进行垃圾回收以后,是否还有该收回的对象被遗漏下来的了。那么,我可以在进行垃圾回收前后,分别进行一次堆情况的快照,然后对比两次快照的对象情况。

内存泄漏检查

内存泄漏是比较常见的问题,而且解决方法也比较通用,这里可以重点说一下,而线程、热点方面的问题则是具体问题具体分析了。

内存泄漏一般可以理解为系统资源(各方面的资源,堆、栈、线程等)在错误使用的情况下,导致使用完毕的资源无法回收(或没有回收),从而导致新的资源分配请求无法完成,引起系统错误。

内存泄漏对系统危害比较大,因为他可以直接导致系统的崩溃。

性能调优总结

大型网站的性能瓶颈大部分瓶颈都在数据库端,所以性能调优总是沿着如何减少对后端的压力来操作,数据库端的瓶颈经常会造成应用端的雪崩(比如:sql查询过长,长事务)等,所以需要及时解决后端性能。

1.通过读写分离、垂直拆分、水平拆分降低对数据库后端的压力。

2.通过优化sql语句,索引等,缩短对sql的查询时间。

2.通过缓存以及CDN来解决对图片、文件等的读操作,避免对数据库产生压力。

3.通过对web端的优化,js、css等压缩,提高大文件读取时间,尽量依赖CDN。

4.还有一个重点就是监控:对JVM、线程、sql查询时间等健康指标就行及时监控,通过监控及时发现瓶颈,及时优化。

以上,是4大性能优化策略(数据库、SQL、JVM等)的详细解析,欢迎评论区留言交流或拓展。

我是 mikechen | 陈睿 ,关注【mikechen的互联网架构】,10年+BAT架构技术倾囊相授。

本文已同步我的技术博客 www.mikechen.cc,更新至我原创的《30W+字大厂架构技术合集》中。

相关实践学习
Serverless极速搭建Hexo博客
本场景介绍如何使用阿里云函数计算服务命令行工具快速搭建一个Hexo博客。
相关文章
|
1月前
|
架构师 数据库
大厂面试高频:数据库乐观锁的实现原理、以及应用场景
数据库乐观锁是必知必会的技术栈,也是大厂面试高频,十分重要,本文解析数据库乐观锁。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试高频:数据库乐观锁的实现原理、以及应用场景
|
23天前
|
SQL 缓存 数据库
SQL慢查询优化策略
在数据库管理和应用开发中,SQL查询的性能优化至关重要。慢查询优化不仅可以提高应用的响应速度,还能降低服务器负载,提升用户体验。本文将详细介绍针对SQL慢查询的优化策略。
|
1月前
|
存储 NoSQL 分布式数据库
微服务架构下的数据库设计与优化策略####
本文深入探讨了在微服务架构下,如何进行高效的数据库设计与优化,以确保系统的可扩展性、低延迟与高并发处理能力。不同于传统单一数据库模式,微服务架构要求更细粒度的服务划分,这对数据库设计提出了新的挑战。本文将从数据库分片、复制、事务管理及性能调优等方面阐述最佳实践,旨在为开发者提供一套系统性的解决方案框架。 ####
|
1月前
|
监控 关系型数据库 MySQL
Linux环境下MySQL数据库自动定时备份策略
在Linux环境下,MySQL数据库的自动定时备份是确保数据安全和可靠性的重要措施。通过设置定时任务,我们可以每天自动执行数据库备份,从而减少人为错误和提高数据恢复的效率。本文将详细介绍如何在Linux下实现MySQL数据库的自动定时备份。
45 3
|
1月前
|
SQL 缓存 监控
数据库性能优化指南
数据库性能优化指南
|
1月前
|
消息中间件 数据库 云计算
微服务架构下的数据库事务管理策略####
在微服务架构中,传统的单体应用被拆分为多个独立的服务单元,每个服务维护自己的数据库实例。这种设计提高了系统的可扩展性和灵活性,但同时也带来了分布式环境下事务管理的复杂性。本文探讨了微服务架构下数据库事务的挑战,并深入分析了几种主流的事务管理策略,包括Saga模式、两阶段提交(2PC)以及基于消息的最终一致性方案,旨在为开发者提供一套适应不同业务场景的事务处理框架。 ####
|
1月前
|
SQL 缓存 监控
SQL性能提升指南:五大优化策略与十个实战案例
在数据库性能优化的世界里,SQL优化是提升查询效率的关键。一个高效的SQL查询可以显著减少数据库的负载,提高应用响应速度,甚至影响整个系统的稳定性和扩展性。本文将介绍SQL优化的五大步骤,并结合十个实战案例,为你提供一份详尽的性能提升指南。
49 0
|
1月前
|
设计模式 存储 缓存
微服务架构下的数据库设计策略
本文探讨了在微服务架构中进行数据库设计时,如何平衡数据的一致性、独立性与系统整体性能之间的关系。文章首先介绍了微服务架构的基本概念及其对数据库设计的影响,随后深入分析了三种主流的数据库设计模式——集中式、去中心化和混合模式,并结合实际案例讨论了它们的适用场景与优缺点。此外,还提出了一系列最佳实践建议,旨在帮助开发者更好地应对微服务环境下的数据管理挑战。
|
4月前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
1月前
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
下一篇
DataWorks