大厂面试高频:Kafka 工作原理 ( 详细图解 )

本文涉及的产品
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 本文详细解析了 Kafka 的核心架构和实现原理,消息中间件是亿级互联网架构的基石,大厂面试高频,非常重要,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。

关注△mikechen的互联网架构△,10年+BAT架构经验倾囊相授


image.png

大家好,我是 mikechen | 陈睿

之前我就讲过,消息中间件那真的是太重要了,那就是亿级互联网架构的基石,实在是太重要了,当然啦,这肯定也是大厂必备技能大厂面试高频

很多同学留言给我:学哪个消息中间件?那肯定是学主流中间件,比如:Kafka、RocketMQ,本篇就先来谈谈Kafka的底层架构以及实现原理。

希望本篇,对你掌握好消息中间件有所帮助@mikechen

Kafka核心架构

它的架构包括以下组件:

image.png

1、话题(Topic):是特定类型的消息流。消息是字节的有效负载(Payload),话题是消息的分类名;

2、生产者(Producer):是能够发布消息到话题的任何对象;

3、服务代理(Broker):已发布的消息保存在一组服务器中,它们被称为代理(Broker)或Kafka集群;

4、消费者(Consumer):可以订阅一个或多个话题,并从Broker拉数据,从而消费这些已发布的消息;

上图我们可见,生产者将数据发送到Broker代理,Broker代理有多个话题topic,消费者从Broker获取数据。

Kafka原理机制

我们将消息的发布(publish)称作 producer,将消息的订阅(subscribe)表述为 consumer,将中间的存储阵列称作 broker(代理),这样就可以大致描绘出这样一个场面:

image.png

生产者将数据生产出来,交给 broker 进行存储,消费者需要消费数据了,就从broker中去拿出数据来,然后完成一系列对数据的处理操作。

image.png

多个 broker 协同合作,producer 和 consumer 部署在各个业务逻辑中被频繁的调用,三者通过 zookeeper管理协调请求和转发,这样一个高性能的分布式消息发布订阅系统就完成了。

图上有个细节需要注意,producer 到 broker 的过程是 push,也就是有数据就推送到 broker,而 consumer 到 broker 的过程是 pull,是通过 consumer 主动去拉数据的。

Zookeeper在kafka的作用

image.png

(1)无论是kafka集群,还是producer和consumer都依赖于zookeeper来保证系统可用性集群保存一些meta信息。

(2)Kafka使用zookeeper作为其分布式协调框架,很好的将消息生产、消息存储、消息消费的过程结合在一起。

(3)同时借助zookeeper,kafka能够生产者、消费者和broker在内的所以组件在无状态的情况下,建立起生产者和消费者的订阅关系,并实现生产者与消费者的负载均衡。

Kafka的特性

1.高吞吐量、低延迟

kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒,每个topic可以分多个partition, consumer group 对partition进行consume操作。

2.可扩展性

kafka集群支持热扩展

3.持久性、可靠性

消息被持久化到本地磁盘,并且支持数据备份防止数据丢失

4.容错性

允许集群中节点失败(若副本数量为n,则允许n-1个节点失败)

5.高并发

支持数千个客户端同时读写

Kafka的应用场景

image.png

1.日志收集

一个公司可以用Kafka可以收集各种服务的log,通过kafka以统一接口服务的方式开放给各种consumer,例如hadoop、Hbase、Solr等。

2.消息系统

解耦和生产者和消费者、缓存消息等。

3.用户活动跟踪

Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到kafka的topic中,然后订阅者通过订阅这些topic来做实时的监控分析,或者装载到hadoop、数据仓库中做离线分析和挖掘。

4.运营指标

Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告。

5.流式处理

比如 spark streaming 和 storm 。

以上,是分布式缓存详细解析,欢迎评论区留言交流或拓展。

我是 mikechen | 陈睿 ,关注【mikechen的互联网架构】,10年+BAT架构技术倾囊相授。

本文已同步我的技术博客 www.mikechen.cc,更新至我原创的《30W+字大厂架构技术合集》中。

相关文章
|
2天前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
2天前
|
存储 安全 Java
面试高频:Synchronized 原理,建议收藏备用 !
本文详解Synchronized原理,包括其作用、使用方式、底层实现及锁升级机制。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
面试高频:Synchronized 原理,建议收藏备用 !
|
25天前
|
存储 监控 算法
美团面试:说说 G1垃圾回收 底层原理?说说你 JVM 调优的过程 ?
尼恩提示: G1垃圾回收 原理非常重要, 是面试的重点, 大家一定要好好掌握
美团面试:说说 G1垃圾回收 底层原理?说说你 JVM 调优的过程  ?
|
25天前
|
SQL 存储 关系型数据库
美团面试:binlog、redo log、undo log的底层原理是什么?它们分别实现ACID的哪个特性?
老架构师尼恩在其读者交流群中分享了关于 MySQL 中 redo log、undo log 和 binlog 的面试题及其答案。这些问题涵盖了事务的 ACID 特性、日志的一致性问题、SQL 语句的执行流程等。尼恩详细解释了这些日志的作用、所在架构层级、日志形式、缓存机制以及写文件方式等内容。他还提供了多个面试题的详细解答,帮助读者系统化地掌握这些知识点,提升面试表现。此外,尼恩还推荐了《尼恩Java面试宝典PDF》和其他技术圣经系列PDF,帮助读者进一步巩固知识,实现“offer自由”。
美团面试:binlog、redo log、undo log的底层原理是什么?它们分别实现ACID的哪个特性?
|
25天前
|
负载均衡 算法 Java
蚂蚁面试:Nacos、Sentinel了解吗?Springcloud 核心底层原理,你知道多少?
40岁老架构师尼恩分享了关于SpringCloud核心组件的底层原理,特别是针对蚂蚁集团面试中常见的面试题进行了详细解析。内容涵盖了Nacos注册中心的AP/CP模式、Distro和Raft分布式协议、Sentinel的高可用组件、负载均衡组件的实现原理等。尼恩强调了系统化学习的重要性,推荐了《尼恩Java面试宝典PDF》等资料,帮助读者更好地准备面试,提高技术实力,最终实现“offer自由”。更多技术资料和指导,可关注公众号【技术自由圈】获取。
蚂蚁面试:Nacos、Sentinel了解吗?Springcloud 核心底层原理,你知道多少?
|
25天前
|
SQL 关系型数据库 MySQL
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
尼恩,一位40岁的资深架构师,通过其丰富的经验和深厚的技術功底,为众多读者提供了宝贵的面试指导和技术分享。在他的读者交流群中,许多小伙伴获得了来自一线互联网企业的面试机会,并成功应对了诸如事务ACID特性实现、MVCC等相关面试题。尼恩特别整理了这些常见面试题的系统化解答,形成了《MVCC 学习圣经:一次穿透MYSQL MVCC》PDF文档,旨在帮助大家在面试中展示出扎实的技术功底,提高面试成功率。此外,他还编写了《尼恩Java面试宝典》等资料,涵盖了大量面试题和答案,帮助读者全面提升技术面试的表现。这些资料不仅内容详实,而且持续更新,是求职者备战技术面试的宝贵资源。
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
|
25天前
|
消息中间件 Java Linux
得物面试:什么是零复制?说说 零复制 底层原理?(吊打面试官)
尼恩,40岁老架构师,专注于技术分享与面试辅导。近期,尼恩的读者群中有小伙伴在面试一线互联网企业如得物、阿里、滴滴等时,遇到了关于零复制技术的重要问题。为此,尼恩系统化地整理了零复制的底层原理,包括RocketMQ和Kafka的零复制实现,以及DMA、mmap、sendfile等技术的应用。尼恩还计划推出一系列文章,深入探讨Netty、Kafka、RocketMQ等框架的零复制技术,帮助大家在面试中脱颖而出,顺利拿到高薪Offer。此外,尼恩还提供了《尼恩Java面试宝典》PDF等资源,助力大家提升技术水平。更多内容请关注尼恩的公众号【技术自由圈】。
得物面试:什么是零复制?说说 零复制 底层原理?(吊打面试官)
|
25天前
|
消息中间件 存储 缓存
美团面试: Kafka为啥能实现 10Wtps 到100Wtps ?kafka 如何实现零复制 Zero-copy?
40岁老架构师尼恩分享了Kafka如何实现高性能的秘诀,包括零拷贝技术和顺序写。Kafka采用mmap和sendfile两种零拷贝技术,前者用于读写索引文件,后者用于向消费者发送消息,减少数据在用户空间和内核空间间的拷贝次数,提高数据传输效率。此外,Kafka通过顺序写日志文件,避免了磁盘寻道和旋转延迟,进一步提升了写入性能。尼恩还提供了系列技术文章和PDF资料,帮助读者深入理解这些技术,提升面试竞争力。
美团面试: Kafka为啥能实现 10Wtps 到100Wtps ?kafka 如何实现零复制 Zero-copy?
|
1月前
|
消息中间件 缓存 分布式计算
大数据-59 Kafka 高级特性 消息发送03-自定义拦截器、整体原理剖析
大数据-59 Kafka 高级特性 消息发送03-自定义拦截器、整体原理剖析
26 2
|
1月前
|
消息中间件 存储 Kafka
面试题:Kafka如何保证高可用?有图有真相
面试题:Kafka如何保证高可用?有图有真相
下一篇
无影云桌面