大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。

关注△mikechen的互联网架构△,10年+BAT架构经验倾囊相授


image.png

大家好,我是 mikechen | 陈睿

缓存雪崩、缓存穿透、缓存并发等这些问题,大厂面试经常问,在我们实际的工作中,也会经常遇到以上并发场景,本篇一一来详解@mikechen

image.png

01 缓存雪崩

数据未加载到缓存中,或者缓存同一时间大面积的失效,从而导致所有请求都去查数据库,导致数据库CPU和内存负载过高,甚至宕机。

比如一个雪崩的简单过程:

1、redis集群大面积故障

2、缓存失效,但依然大量请求访问缓存服务redis

3、redis大量失效后,大量请求转向到mysql数据库

4、mysql的调用量暴增,很快就扛不住了,甚至直接宕机

5、由于大量的应用服务依赖mysql和redis的服务,这个时候很快会演变成各服务器集群的雪崩,最后网站彻底崩溃。

image.png

02 缓存雪崩解决方案

image.png

1.缓存的高可用性

缓存层设计成高可用,防止缓存大面积故障。即使个别节点、个别机器、甚至是机房宕掉,依然可以提供服务,例如 Redis Sentinel 和 Redis Cluster 都实现了高可用。

2.缓存降级

可以利用ehcache等本地缓存(暂时使用),但主要还需要对源服务访问进行限流、资源隔离(熔断)、降级等。

当访问量剧增、服务出现问题仍然需要保证服务还是可用的。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级,这里会涉及到运维的配合。

降级的最终目的是保证核心服务可用,即使是有损的。

比如我的淘宝页面,由于是非核心页面,后端服务如果暂时不能提供使用的情况,可以考虑直接使用一个静态页面替换掉,这样对于用户也是永远提供服务的状态(再发报警信息提示急需解决),也不至于出现空白或者异常错误的裸奔状态。

在进行降级之前要对系统进行梳理,比如:哪些业务是核心(必须保证),哪些业务可以容许暂时不提供服务(利用静态页面替换)等,以及配合服务器核心指标,来后设置整体预案,比如:

(1)一般:比如有些服务偶尔因为网络抖动或者服务正在上线而超时,可以自动降级;

(2)警告:有些服务在一段时间内成功率有波动(如在95~100%之间),可以自动降级或人工降级,并发送告警;

(3)错误:比如可用率低于90%,或者数据库连接池被打爆了,或者访问量突然猛增到系统能承受的最大阀值,此时可以根据情况自动降级或者人工降级;

(4)严重错误:比如因为特殊原因数据错误了,此时需要紧急人工降级。

3.Redis备份和快速预热

1)Redis数据备份和恢复

2)快速缓存预热

4.提前演练

最后,建议还是在项目上线前,演练缓存层宕掉后,应用以及后端的负载情况以及可能出现的问题,对高可用提前预演,提前发现问题。

03 缓存穿透

缓存穿透是指查询一个一不存在的数据。例如:从缓存redis没有命中,需要从mysql数据库查询,查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,造成缓存穿透。

解决思路:

如果查询数据库也为空,直接设置一个默认值存放到缓存,这样第二次到缓冲中获取就有值了,而不会继续访问数据库。设置一个过期时间或者当有值的时候将缓存中的值替换掉即可。

可以给key设置一些格式规则,然后查询之前先过滤掉不符合规则的Key。

04 缓存并发

这里的并发指的是多个redis的client同时set key引起的并发问题。

其实,redis自身就是单线程操作,多个client并发操作,按照先到先执行的原则,先到的先执行,其余的阻塞。

当然,另外的解决方案是把redis.set操作放在队列中使其串行化,必须的一个一个执行。

05 缓存预热

缓存预热就是系统上线后,将相关的缓存数据直接加载到缓存系统。

这样就可以避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题,用户直接查询事先被预热的缓存数据。

解决思路:

1、直接写个缓存刷新页面,上线时手工操作下。

2、数据量不大,可以在项目启动的时候自动进行加载。

以上,是分布式缓存详细解析,欢迎评论区留言交流或拓展。

我是 mikechen | 陈睿 ,关注【mikechen的互联网架构】,10年+BAT架构技术倾囊相授。

本文已同步我的技术博客 www.mikechen.cc,更新至我原创的《30W+字大厂架构技术合集》中。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
缓存 NoSQL 安全
面试官考我Redis中的缓存穿透、缓存雪崩和缓存击穿? 拿捏!!!
面试官考我Redis中的缓存穿透、缓存雪崩和缓存击穿? 拿捏!!!
80 0
|
6月前
|
缓存 数据库 NoSQL
【后端面经】【缓存】35|缓存问题:怎么解决缓存穿透、击穿和雪崩问题?--主从切换方案
【5月更文挑战第16天】该方案提出了解决Redis缓存穿透、击穿和雪崩问题的策略。通过使用两个或多个互为备份的Redis集群,确保在单个集群故障时,另一个可以接管。在故障发生时,业务会与备用集群保持心跳检测,并根据业务重要性分批转移流量,逐步增加对备用集群的依赖,同时监控系统稳定性。对于成本敏感的小型公司,可以采用低成本的单机或小规模自建Redis备份。此方案强调渐进式流量转移,以保护系统免受突然压力冲击。
45 1
【后端面经】【缓存】35|缓存问题:怎么解决缓存穿透、击穿和雪崩问题?--主从切换方案
|
6月前
|
存储 缓存 NoSQL
【后端面经】【缓存】35|缓存问题:怎么解决缓存穿透、击穿和雪崩问题?---解决缓存穿透
【5月更文挑战第14天】解决缓存穿透问题有两种策略。一是回写特殊值,当数据不存在时,在缓存中存储特殊值以标记,避免下次重复查询数据库。但此方法可能被恶意请求利用,浪费内存。二是使用布隆过滤器,预先判断数据是否存在,减少无效数据库查询。布隆过滤器虽有假阳性可能,但概率低,可接受。此外,可先查缓存再查布隆过滤器,优化正常请求的效率。两种方式各有优劣,实际应用需根据场景选择。
53 3
|
6月前
|
缓存 数据库 算法
【后端面经】【缓存】35|缓存问题:怎么解决缓存穿透、击穿和雪崩问题?---解决缓存击穿和雪崩、限流
【5月更文挑战第15天】本文介绍了如何解决缓存击穿和雪崩问题。对于缓存击穿,采用singleflight模式,确保即使热点数据导致大量请求未命中缓存,也只允许一个请求真正查询数据,其他请求等待其结果。对于缓存雪崩,解决方案是在设置过期时间时添加随机偏移量,避免所有数据同时过期。偏移量应与过期时间成正比。此外,限流也是一个重要策略,可以在服务层和数据库层实施,以限制请求流量,保护数据库免受高并发压力。
67 0
【后端面经】【缓存】35|缓存问题:怎么解决缓存穿透、击穿和雪崩问题?---解决缓存击穿和雪崩、限流
|
6月前
|
存储 缓存 NoSQL
设计缓存系统:缓存穿透,缓存击穿,缓存雪崩解决方案分析
设计缓存系统:缓存穿透,缓存击穿,缓存雪崩解决方案分析
82 1
面试官:谈关于缓存穿透+击穿+雪崩,热点数据失效问题的解决方案
当我们查询一条数据时,先去查询缓存,如果缓存有就直接返回,如果没有就去查询数据库,然后返回。这种情况下就可能出现下面的一些现象。 2.缓存穿透
|
存储 缓存 监控
一文讲透Redis缓存穿透、缓存击穿与缓存雪崩
一文讲透Redis缓存穿透、缓存击穿与缓存雪崩
1570 0
|
存储 缓存 NoSQL
Redis缓存击穿,缓存穿透,缓存雪崩解决方案(附代码)
Redis缓存击穿,缓存穿透,缓存雪崩解决方案(附代码)
495 0
Redis缓存击穿,缓存穿透,缓存雪崩解决方案(附代码)
|
存储 SQL 缓存
【分布式技术专题】带你分析认识缓存穿透/雪崩/击穿
【分布式技术专题】带你分析认识缓存穿透/雪崩/击穿
167 0
【分布式技术专题】带你分析认识缓存穿透/雪崩/击穿
|
存储 缓存 NoSQL
Redis缓存穿透和雪崩相关概念(面试高频,工作常用)
Redis缓存的使用,极大的提升了应用程序的性能和效率,特别是数据查询方面,但同时,它也带来了一些问题,其中,最重要的问题,就是数据的一致性问题。从严格意义上讲,这个无解。如果对数据的一致性要求很高,那么就不能使用缓存。
151 0
Redis缓存穿透和雪崩相关概念(面试高频,工作常用)