多模态大模型LLM、MLLM性能评估方法

简介: 针对多模态大模型(LLM)和多语言大模型(MLLM)的性能评估,本文介绍了多种关键方法和标准,包括模态融合率(MIR)、多模态大语言模型综合评估基准(MME)、CheckList评估方法、多模态增益(MG)和多模态泄露(ML),以及LLaVA Bench。这些方法为评估模型的多模态和多语言能力提供了全面的框架,有助于研究者和开发者优化和改进模型。

针对多模态大模型(LLM)和多语言大模型(MLLM)的性能评估方法,以下是一些关键的评估方法和标准:

  1. 模态融合率(MIR)

    • 中国科学技术大学提出了模态融合率(MIR)来高效评估多模态预训练对齐质量。MIR能够准确对应模型在有监督微调后在下游测试基准上的得分,与损失值(Loss)、困惑度(PPL)和上下文评估(In-Context)相比,MIR显示出更好的稳定性和可靠性。
  2. 多模态大语言模型综合评估基准(MME)

    • MME是一个综合评估基准,旨在全面评估MLLMs的感知和认知能力。它包括14个子任务,覆盖从对象识别到常识推理、数值计算、文本翻译和代码推理等多个方面。MME的指令设计简洁,以“是或否”的形式输出,便于定量统计和评估。
  3. CheckList评估方法

    • 受到软件工程中行为测试的启发,CheckList是一种全新的NLP模型测试方法,帮助人们更为清晰、系统地了解各种模型的优缺点。它通过验证输入输出行为来测试一个系统的不同的能力。
  4. 多模态增益(MG)和多模态泄露(ML)

    • 为了评估LVLMs在多模态训练中的实际性能提升和数据泄露程度,提出了两个新的度量指标:多模态增益(MG)和多模态泄露(ML)。MG量化模型在接收到视觉信息时相对于仅使用文本信息时的性能提升,而ML评估模型在训练过程中可能无意中记忆的数据的程度。
  5. LLaVA Bench

    • LLaVA-Bench是专门针对LMM设计的开放世界视觉聊天基准,它提供了一个评估多模态学习能力的平台,弥合了语言和视觉理解之间的差距。

这些评估方法和标准为多模态大模型和多语言大模型的性能评估提供了全面的框架,帮助研究者和开发者理解模型的能力和局限性,指导后续的模型优化和应用开发。

相关文章
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
LLM群体智能崛起,数学性能暴增11.6%!谷歌DeepMind四大机构联手新作
【10月更文挑战第17天】近日,谷歌、DeepMind等四大机构联合发布论文,展示大型语言模型(LLMs)在数学问题解决上的显著进步。通过引入元认知知识,研究人员开发了提示引导的交互程序,使LLMs能为数学问题分配合理技能标签并进行语义聚类。实验结果显示,GPT-4在GSM8K和MATH数据集上的准确性分别提升了11.6%和7.52%,展现出巨大潜力。这一成果不仅为AI领域提供了新思路,也为数学教育带来了启示。
35 4
|
27天前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
57 2
|
1月前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
大模型强崩溃!Meta新作:合成数据有剧毒,1%即成LLM杀手
在人工智能领域,大型语言模型(LLMs)的快速发展令人瞩目,但递归生成数据可能导致“模型崩溃”。Meta的研究揭示,模型在训练过程中会逐渐遗忘低概率事件,导致数据分布偏差。即使少量合成数据(如1%)也会显著影响模型性能,最终导致崩溃。研究强调保留原始数据的重要性,并提出社区合作和技术手段来区分合成数据和真实数据。论文地址:https://www.nature.com/articles/s41586-024-07566-y
27 2
|
14天前
|
人工智能 自然语言处理 算法
政务培训|LLM大模型在政府/公共卫生系统的应用
本课程是TsingtaoAI公司面向某卫生统计部门的政府职员设计的大模型技术应用课程,旨在系统讲解大语言模型(LLM)的前沿应用及其在政府业务中的实践落地。课程涵盖从LLM基础知识到智能化办公、数据处理、报告生成、智能问答系统构建等多个模块,全面解析大模型在卫生统计数据分析、报告撰写和决策支持等环节中的赋能价值。
38 2
|
17天前
|
机器学习/深度学习 自然语言处理
完全使用自生成数据实现LLM自我纠正,DeepMind新突破SCoRe:纠正性能提升15.9%
【10月更文挑战第27天】Google DeepMind 研究人员开发了 SCoRe 方法,利用多回合在线强化学习显著提升大型语言模型(LLM)的自我纠正能力。该方法分为两个阶段:第一阶段通过强化学习减少行为崩溃,第二阶段使用奖励塑造优化两次尝试的性能。实验结果显示,SCoRe 在数学和编程任务上分别提升了 4.4% 和 12.2% 的自我纠正性能。
35 3
|
23天前
|
JSON 人工智能 算法
探索LLM推理全阶段的JSON格式输出限制方法
文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
|
23天前
|
机器学习/深度学习 自然语言处理 数据格式
社区供稿 |【8卡从零训练Steel-LLM】微调探索与评估
本篇文章主要介绍下微调上的探索以及评估。另外,还特意试了试训练CMMLU数据集,能在榜单上提多少分
|
1月前
|
自然语言处理 数据中心
Scaling LLM Test-Time Compute Optimally: 一种更有效的方法
【10月更文挑战第14天】本文探讨了大型语言模型(LLMs)在测试时通过增加计算资源来提升性能的可能性。研究发现,通过优化测试时计算的分配,特别是采用基于过程的验证器搜索和自适应更新响应分布的方法,LLM可以显著提高对复杂问题的应对能力,甚至在某些情况下超越更大规模的模型。论文提出了“计算最优”策略,旨在根据问题难度自适应调整计算资源,以最大化性能提升。未来工作将聚焦于增强测试时计算缩放、快速评估问题难度及实现自我改进循环。
50 6
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
LLM群体智能崛起,数学性能暴增11.6%!谷歌DeepMind四大机构联手新作
【10月更文挑战第16天】最新研究显示,大型语言模型(LLMs)在数学问题解决上取得显著进展。谷歌、DeepMind等机构的研究人员通过引入元认知知识,使LLMs能更好地理解和解决数学问题,其在GSM8K和MATH数据集上的准确率分别提升了11.6%和7.52%。这一成果不仅为AI领域开辟了新路径,也为数学教育带来了新的可能性。
39 3

热门文章

最新文章