以下是一些关于将图形学先验知识融入人工智能模型的研究论文:
- 《Incorporating Causal Graphical Prior Knowledge into Predictive Modeling via Simple Data Augmentation》:作者为Takeshi Teshima、Masashi Sugiyama,该论文提出了一种与模型无关的数据增强方法,能够利用因果图中编码的条件独立关系先验知识进行监督机器学习,理论上证明了该方法可通过降低预测假设类的表观复杂性来抑制过拟合,并通过实际数据实验证明了其在提高预测准确性方面的有效性,尤其在小数据情况下.
- 《Graphonomy: Universal Human Parsing via Graph Transfer Learning》:这篇论文聚焦于人体解析任务,提出了Graphonomy模型,通过构建人体部位的语义图,并将其先验知识融入到神经网络架构中,实现了更准确的人体部位分割和解析,为人体姿态估计、动作识别等相关应用提供了有力支持。
- 《3D Graph Neural Networks for RGBD Semantic Segmentation》:论文主要研究了如何利用3D图形神经网络对RGB-D图像进行语义分割。作者将3D空间结构的先验知识融入到图神经网络模型中,通过构建3D图结构来表示场景中的物体和空间关系,从而更好地利用深度信息和几何特征,提高了语义分割的精度,为3D场景理解和机器人视觉等领域提供了新的方法和思路。
- 《Deep Learning of Graphical Models for Computer Vision》: 此论文探讨了如何将图形模型的先验知识与深度学习相结合,用于计算机视觉任务。作者提出了一种基于深度学习的图形模型推理方法,能够有效地学习和利用图形结构中的概率关系,提高了图像分类、目标检测等任务的性能,展示了图形学先验知识在提升视觉任务准确性方面的巨大潜力。
- 《Geometry-Guided Network for Monocular 3D Object Detection》:该研究针对单目3D目标检测任务,提出了一种几何引导网络,将3D几何先验知识融入到神经网络中。通过引入几何约束和投影关系,模型能够更准确地从单目图像中推断出物体的3D位置和姿态,为自动驾驶、机器人感知等领域的3D目标检测提供了更有效的解决方案 。