SMoA: 基于稀疏混合架构的大语言模型协同优化框架

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 通过引入稀疏化和角色多样性,SMoA为大语言模型多代理系统的发展开辟了新的方向。

在大语言模型(LLM)快速发展的背景下,研究者们越来越关注如何通过多代理系统来增强模型性能。传统的多代理方法虽然避免了大规模再训练的需求,但仍面临着计算效率和思维多样性的挑战。本文提出的稀疏代理混合(Sparse Mixture-of-Agents, SMoA)框架,通过借鉴稀疏专家混合(Sparse Mixture-of-Experts, SMoE)的设计理念,有效解决了这些问题。

基础架构:MoA模型

在介绍SMoA之前,需要先了解基础的混合代理(Mixture-of-Agents, MoA)架构。在MoA中,系统包含l层,每层包含n个提议者(proposer)。其核心运算可以通过以下公式表示:

其中:

  • P_i,j 表示第i层的第j个提议者
  • x_i 是输入文本
  • ⊕ 表示聚合-综合提示操作
  • y_i 是第i层的输出

最终输出通过聚合器(Aggregator)生成:

SMoA架构解析

SMoA(Sparse Mixture-of-Agents)的架构设计融合了多层级代理交互和稀疏化处理,主要包含以下核心组件:

  • 输入层:接收初始提示(Prompt)
  • 处理层:包含多个并行的代理模块
  • 输出层:生成最终响应

1. 代理模块(Agent Module)

处理输入信息并生成候选响应

  • 每个模块都有独特的角色定义
  • 并行工作以提高效率
  • 通过角色扮演促进思维多样性

2. 评判代理(Judge)

每个处理层之间

  • 评估当前层所有代理的输出
  • 选择最优质的k个响应
  • 过滤低质量或重复信息

工作流程

 输入: n个代理响应
 过程: 质量评估与排序
 输出: k个最优响应(k < n)

3. 调节代理(Moderator)

处理层的最后

  • 监控整体进度
  • 评估响应质量和一致性
  • 决定是否继续迭代

决策依据

  • 响应质量评分
  • 代理间一致性程度
  • 迭代轮次计数

4. 信息流动路径

前向传递

  1. 输入提示进入第一层代理模块
  2. 并行代理生成候选响应
  3. 评判代理选择最优响应
  4. 调节代理评估是否继续

反馈机制

  1. 评判结果影响下一轮代理行为
  2. 调节决策控制迭代进程
  3. 动态调整处理深度

SMoA的技术创新

上图展示了传统MAD、MoA与SMoA的架构对比,我们来通过公式进行详细介绍

1. 响应选择机制

SMoA引入评判代理(Judge)来实现响应选择,其数学表达为:

这个机制通过选择最佳的k个响应显著减少了计算开销,其中k是控制网络稀疏度的参数。

2. 早停机制

调节代理(Moderator)的决策过程可以表示为:

这个布尔值决定是否继续迭代过程,有效降低了不必要的计算。

3. 角色扮演机制

角色分配过程可以表达为:

其中:

  • D 是数据集描述
  • T 是任务需求
  • r_i 是分配给每个提议者的角色描述

这些数学公式清晰地展示了SMoA各个组件的工作机制,以及它们如何共同实现系统的稀疏化和效率提升。

实验评估与结果分析

评估框架

研究团队在三个主要维度进行了全面评估:

  1. Just-Eval对齐性评估- 评估指标:有用性、清晰度、事实性、深度、参与度、安全性- 使用GPT-4进行评分,满分5分- 涵盖多个知名数据集
  2. MMAU推理能力评估- 数学理解(Math)- 工具使用(Tool)- 代码竞赛(Code)- 使用准确率作为评估指标
  3. CEB公平性评估- 主要关注有害性和刻板印象- 分数越低表示性能越好

关键实验结果

  1. 对齐性能比较:性能提升 = (SMoA得分 - 基线得分) / 基线得分 * 100%- Qwen2-72B-Instruct: +1.9%- Qwen1.5-72B-Chat: +1.7%- Mixtral-8*22B: +3.6%
  2. 推理能力评估:平均得分 = (Math + Tool + Code) / 3- 基线模型:20.78分- SMoA提升:+18.2%- MoA提升:+24.9%
  3. 计算效率分析:效率比 = SMoA处理时间 / MoA处理时间显示SMoA平均可节省约40%的计算资源

创新贡献与未来方向

主要贡献

  1. 架构创新- 提出稀疏化的多代理框架- 引入评判和调节机制- 实现角色多样性
  2. 性能突破- 维持高性能的同时显著降低计算成本- 提高系统可扩展性- 增强思维多样性
  3. 实践价值- 为大规模部署提供可行方案- 降低运营成本- 提高系统效率

未来研究方向

  1. 网络结构优化- 探索更复杂的代理连接方式- 研究动态网络拓扑
  2. 激活策略改进- 开发更智能的代理选择机制- 优化早停判断标准
  3. 应用场景拓展- 探索在更多领域的应用- 研究特定任务的优化策略

这项研究不仅在理论上提供了创新的解决方案,也在实践中展示了显著的改进效果。通过引入稀疏化和角色多样性,SMoA为大语言模型多代理系统的发展开辟了新的方向。

论文地址:

https://avoid.overfit.cn/post/ace63f7d197a44d6b0ce7086d0e5ba15

目录
相关文章
|
6月前
|
机器学习/深度学习 编解码 文字识别
视频生成领域的发展概述:从多级扩散到LLM
2023年是语言模型(llm)和图像生成技术激增的一年,但是视频生成受到的关注相对较少。今年刚到2月份,OpenAI就发布了一个惊人的视频生成模型Sora。虽然它的架构没有披露,但是通过总结现有的视频生成领域可能能对Sora的构架有所理解。
140 0
|
6月前
|
物联网 网络架构
PHATGOOSE:使用LoRA Experts创建低成本混合专家模型实现零样本泛化
这篇2月的新论文介绍了Post-Hoc Adaptive Tokenwise Gating Over an Ocean of Specialized Experts (PHATGOOSE),这是一种通过利用一组专门的PEFT模块(如LoRA)实现零样本泛化的新方法
75 0
|
20天前
|
机器学习/深度学习 自然语言处理 算法
RAPTOR:多模型融合+层次结构 = 检索性能提升20%,结果还更稳健
本文探讨了通过多模型集成技术提升信息检索系统性能的方法,重点介绍了RAPTOR框架。RAPTOR通过构建层次化的信息组织结构和递归摘要技术,显著提高了检索系统的性能和适应性。研究建立在RAG Fusion技术基础上,旨在提供更全面的信息检索解决方案。
63 2
RAPTOR:多模型融合+层次结构 = 检索性能提升20%,结果还更稳健
|
2天前
|
机器学习/深度学习 自然语言处理 C++
TSMamba:基于Mamba架构的高效时间序列预测基础模型
TSMamba通过其创新的架构设计和训练策略,成功解决了传统时间序列预测模型面临的多个关键问题。
15 4
TSMamba:基于Mamba架构的高效时间序列预测基础模型
|
24天前
|
机器学习/深度学习 编解码 负载均衡
MoH:融合混合专家机制的高效多头注意力模型及其在视觉语言任务中的应用
本文提出了一种名为混合头注意力(MoH)的新架构,旨在提高Transformer模型中注意力机制的效率。MoH通过动态注意力头路由机制,使每个token能够自适应选择合适的注意力头,从而在减少激活头数量的同时保持或提升模型性能。实验结果显示,MoH在图像分类、类条件图像生成和大语言模型等多个任务中均表现出色,尤其在减少计算资源消耗方面有显著优势。
40 1
|
4月前
|
并行计算 数据挖掘 PyTorch
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
|
4月前
|
测试技术 计算机视觉 网络架构
【YOLOv8改进 - 特征融合】CARAFE:轻量级新型上采样算子,助力细节提升
【YOLOv8改进 - 特征融合】CARAFE:轻量级新型上采样算子,助力细节提升
|
6月前
|
机器学习/深度学习 存储 编解码
沈春华团队最新 | SegViT v2对SegViT进行全面升级,让基于ViT的分割模型更轻更强
沈春华团队最新 | SegViT v2对SegViT进行全面升级,让基于ViT的分割模型更轻更强
109 0
|
11月前
|
自然语言处理 文字识别 算法
RexPrompt:探索兼顾低成本、多模态、多语言、多任务的零少样本通用自然语言理解框架
RexPrompt框架的推理速度较SiamesePrompt框架提升了2倍,F1-Score提升了10%!
|
机器学习/深度学习
结合亲和力提高了 28.7 倍,基于端到端贝叶斯语言模型的方法设计大型、多样化的高亲和力抗体库
结合亲和力提高了 28.7 倍,基于端到端贝叶斯语言模型的方法设计大型、多样化的高亲和力抗体库
112 0