基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。

1.程序功能描述
车间作业调度问题(Job Shop Scheduling Problem, JSSP)是一种典型的生产调度问题,旨在确定一系列作业在多个并行工作中心上的加工顺序和起止时间,以最小化总完成时间、最大完工时间、机器闲置时间等目标。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg
3.jpeg
4.jpeg

3.核心程序

       % 交叉操作
       Pop0{j2}=func_cross(Bestp{j2},Pop0{j2},l2,l1);
       Pop0{j2}=func_cross(bestparticle1,Pop0{j2},l4,l3); 
   end 
   Fitjob=[Fitjob,minval];


   if jj == 1
      [x1,x2,x3]=func_decode2(bestparticle,Mjob,Mt,Nmach);
      disp('迭代1次时,最小流动时间,最大完工时间,最小间隙时间')
      [x1,x2,x3]
      figure
      func_gant(bestparticle,Pop0Long,Mjob,Mt,x2);
      title('迭代1次时甘特图');
   end
   if jj == 10
      [x1,x2,x3]=func_decode2(bestparticle,Mjob,Mt,Nmach);
      disp('迭代10次时,最小流动时间,最大完工时间,最小间隙时间')
      [x1,x2,x3]
      figure
      func_gant(bestparticle,Pop0Long,Mjob,Mt,x2);
      title('迭代10次时甘特图');
   end
   if jj == 500
      [x1,x2,x3]=func_decode2(bestparticle,Mjob,Mt,Nmach);
      disp('迭代500次时,最小流动时间,最大完工时间,最小间隙时间')
      [x1,x2,x3]
      figure
      func_gant(bestparticle,Pop0Long,Mjob,Mt,x2);
      title('迭代500次时甘特图');
   end
end


figure;
plot(Fitjob);
xlabel('迭代次数');
ylabel('适应度收敛曲线');
39

4.本算法原理
4.1遗传算法与模拟退火算法简介
遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传机制的全局搜索算法。其主要组成部分包括:

编码(Encoding):将作业调度问题转化为基因型表示,如作业列表、工序顺序、工作中心分配等信息。

种群初始化(Population Initialization):创建一个包含多个个体(作业调度方案)的初始种群。

适应度评估(Fitness Evaluation):根据优化目标(如总完成时间)计算每个个体的适应度值。

遗传操作(Genetic Operators):包括选择、交叉(Crossover)、变异(Mutation),用于生成下一代种群。

终止条件(Termination Criteria):设定最大迭代次数、收敛阈值等,决定算法何时停止。

   模拟退火算法(Simulated Annealing, SA)模拟固体材料在冷却过程中的退火现象,实现概率性接受非改进解以跳出局部最优。其主要步骤包括:

状态转移(State Transition):基于当前解生成一个邻域解。

接受概率(Acceptance Probability):

温度更新(Temperature Update):随着迭代过程,逐步降低温度T,遵循降温策略如指数降温:

Tt+1​=αTt​

其中,α是冷却系数,通常取值在(0 < α<1)之间。

4.2 GSAHO算法应用于JSSP
编码:采用作业列表表示法(Job-List Representation),每个个体由n个子串组成,每个子串代表一个作业,子串内部按照工序顺序排列。例如,I = [i_1, i_2, ..., i_n],其中ij = [o{j1}, o{j2}, ..., o{jmj}],o{jk}表示作业j的第k道工序在工作中心上的起始时间。

适应度函数:根据优化目标定义适应度函数。以最小化最大完工时间(Makespan)为例,适应度函数为:
be2d1fa099453c959a9af0a2e8337606_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,C{max}为最大完工时间,p{jk}为作业j的第k道工序的加工时间,t_{jk}为其等待时间(由调度决定)。

遗传操作:采用轮盘赌选择、部分匹配交叉(PMX)和单点变异等遗传算子。

模拟退火:在遗传算法的基础上,引入模拟退火过程,每次迭代后以一定的接受概率接受非改进解,以增加种群的多样性并避免早熟收敛。

相关文章
|
13天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
14天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
28天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
15天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
14天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
34 3
|
25天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
1月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。