Spark Standalone与YARN的区别?

简介: 本文详细解析了 Apache Spark 的两种常见部署模式:Standalone 和 YARN。Standalone 模式自带轻量级集群管理服务,适合小规模集群;YARN 模式与 Hadoop 生态系统集成,适合大规模生产环境。文章通过示例代码展示了如何在两种模式下运行 Spark 应用程序,并总结了两者的优缺点,帮助读者根据需求选择合适的部署模式。

随着大数据处理需求的不断增长,Apache Spark 成为了业界广泛采用的大数据处理框架之一。Spark 支持多种部署模式,其中最为常见的是 Standalone 和 YARN。这两种模式各有特点,适用于不同的场景。本文将以教程的形式,详细解析 Spark Standalone 与 YARN 之间的区别,并通过示例代码展示如何在两种模式下运行 Spark 应用程序。

Spark Standalone 模式

Spark Standalone 是 Spark 自带的一种集群管理模式,它为 Spark 提供了一个轻量级的集群管理服务。Standalone 模式下,集群由一个 Master 和多个 Worker 组成,Master 负责资源调度和作业管理,Worker 节点则提供计算资源。

启动 Spark Standalone 集群

要启动一个简单的 Spark Standalone 集群,首先需要确保已经安装了 Spark。接下来,可以通过以下命令启动 Master 和 Worker:

# 启动 Master
$SPARK_HOME/sbin/start-master.sh

# 启动 Worker
$SPARK_HOME/sbin/start-worker.sh spark://<master-ip>:7077

运行 Spark 应用程序

在 Standalone 模式下运行 Spark 应用程序,可以通过指定 --master 参数来指定 Master 节点的地址。下面是一个简单的示例,该示例使用 Scala 编写了一个 Spark 应用程序,用于统计文本文件中单词的数量。

object WordCount {
  def main(args: Array[String]) {
    val conf = new SparkConf().setAppName("WordCount").setMaster("spark://<master-ip>:7077")
    val sc = new SparkContext(conf)

    val input = sc.textFile("hdfs://<hdfs-ip>:9000/input.txt")
    val counts = input.flatMap(line => line.split(" "))
                      .map(word => (word, 1))
                      .reduceByKey(_ + _)

    counts.saveAsTextFile("hdfs://<hdfs-ip>:9000/output")
  }
}

要编译并运行此示例,你需要先将 Scala 项目打包成 JAR 文件,然后使用 spark-submit 命令提交到 Spark Standalone 集群:

# 编译 Scala 项目
sbt assembly

# 提交 Spark 应用程序
$SPARK_HOME/bin/spark-submit --class org.example.WordCount --master spark://<master-ip>:7077 target/scala-2.12/spark-wordcount_2.12-1.0.jar

YARN 模式

Apache YARN (Yet Another Resource Negotiator) 是 Hadoop 2.x 版本引入的一个资源管理系统,它能够为多种计算框架提供统一的资源管理和调度服务。Spark 也可以运行在 YARN 上,从而与其他 Hadoop 生态系统中的应用共享资源。

配置 YARN

要在 YARN 上运行 Spark 应用程序,首先需要确保 Hadoop 集群已经正确配置了 YARN。接下来,可以通过以下命令提交 Spark 应用程序:

# 提交 Spark 应用程序
$SPARK_HOME/bin/spark-submit --class org.example.WordCount --master yarn target/scala-2.12/spark-wordcount_2.12-1.0.jar

在 YARN 模式下,spark-submit 会将应用程序提交给 YARN ResourceManager,后者负责将资源分配给 Spark 应用程序。

区别总结

  1. 资源管理

    • Standalone:内置资源管理器,简单易用,适合小规模集群或独立部署。
    • YARN:外部资源管理器,能够与 Hadoop 生态系统中的其他应用共享资源,更适合大规模生产环境。
  2. 部署灵活性

    • Standalone:部署和配置相对简单。
    • YARN:部署和配置较为复杂,但提供了更高的资源隔离和安全性。
  3. 扩展性

    • Standalone:扩展性有限,通常用于测试和开发环境。
    • YARN:支持大规模集群部署,能够随着业务增长而扩展。
  4. 与其他框架的集成

    • Standalone:主要用于 Spark 应用程序,较少与其他框架集成。
    • YARN:能够与其他 Hadoop 生态系统中的框架(如 MapReduce、Storm 等)共享资源,便于构建混合工作负载。

结论

Spark Standalone 和 YARN 模式各有优势,选择哪种模式取决于你的具体需求。如果你需要快速搭建一个小型集群进行测试或开发,Standalone 模式是一个不错的选择。而对于生产环境中的大规模部署,YARN 提供了更好的资源管理和调度能力。希望这篇文章能帮助你更好地理解和选择适合自己的 Spark 部署模式。

相关文章
|
2月前
|
分布式计算 数据处理 Apache
Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
【10月更文挑战第10天】Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
314 1
|
2月前
|
分布式计算 资源调度 Hadoop
Spark Standalone与YARN的区别?
【10月更文挑战第5天】随着大数据处理需求的增长,Apache Spark 成为了广泛采用的大数据处理框架。本文详细解析了 Spark Standalone 与 YARN 两种常见部署模式的区别,并通过示例代码展示了如何在不同模式下运行 Spark 应用程序。Standalone 模式自带轻量级集群管理,适合小规模集群或独立部署;YARN 则作为外部资源管理器,能够与 Hadoop 生态系统中的其他应用共享资源,更适合大规模生产环境。文章对比了两者的资源管理、部署灵活性、扩展性和集成能力,帮助读者根据需求选择合适的部署模式。
35 1
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
143 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
73 0
|
2月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
48 0
|
2月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
103 0
|
1月前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
94 6
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
115 2
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
85 1
|
1月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
72 1