基于Actor-Critic(A2C)强化学习的四旋翼无人机飞行控制系统matlab仿真

简介: 基于Actor-Critic强化学习的四旋翼无人机飞行控制系统,通过构建策略网络和价值网络学习最优控制策略。MATLAB 2022a仿真结果显示,该方法在复杂环境中表现出色。核心代码包括加载训练好的模型、设置仿真参数、运行仿真并绘制结果图表。仿真操作步骤可参考配套视频。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

1.jpeg
2.jpeg
3.jpeg

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
基于Actor-Critic强化学习的四旋翼无人机飞行控制系统是一种利用强化学习技术实现飞行器自主控制的方法。该方法通过构建Actor(策略网络)和Critic(价值网络)两个组件来学习最优控制策略。四旋翼无人机因其灵活性和广泛应用前景成为研究热点。传统的控制方法依赖于精确的数学建模和控制律设计,但在复杂和不确定环境下表现有限。

2.1 强化学习基础
强化学习的核心是马尔科夫决策过程(Markov Decision Process, MDP)。MDP由状态空间 S、动作空间A、转移概率P、即时奖励函数R 和折扣因子γ 构成。

策略 π:定义了智能体在给定状态下选择动作的概率分布。
价值函数:用于评估策略的好坏,主要包括状态价值函数Vπ(s) 和动作价值函数Qπ(s,a)。
2.2 Actor-Critic
Actor-Critic方法结合了策略梯度(Policy Gradient)和价值函数(Value Function)两种方法的优点,通过两个网络协同工作来优化策略。

56a5f5dd6a9df6923c54b213f72a6caa_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.3 四旋翼无人机飞行控制
四旋翼无人机的控制问题可以视为一个MDP,其中:

状态空间S 包括无人机的位置、速度、加速度、姿态等信息。
动作空间A 包括四个电机的推力输出。
即时奖励函数R 可以根据任务需求设计,如接近目标位置、保持姿态稳定等。
状态向量s 可以表示为:

0c26b66e4e19f9b76129ac5411354d62_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

动作向量a 可以表示为四个电机的推力输出:

c250b59819a2f0e7ead13bec5cbc41b5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   基于Actor-Critic强化学习的四旋翼无人机飞行控制系统通过智能体与环境的交互学习最优控制策略,适用于多种复杂的飞行任务。随着算法的不断优化和完善,这种方法将在未来的无人系统开发中发挥更加重要的作用。

3.MATLAB核心程序```% 加载已训练好的代理
load trained\ac.mat

opts = rlSimulationOptions('MaxSteps',(Time2-Time1)/dt);% 设置最大步骤数

Rwd_all = zeros(Sim_times,1);% 初始化总奖励数组
Steps_all = zeros(Sim_times,1);% 初始化步数数组
for i = 1:Sim_times% 对于每次模拟
Exp_learn = sim(Environment,agent,opts);% 运行模拟并获取经验
Rwd_all(i) = sum(Exp_learn.Reward);% 计算并存储总奖励
end

figure;
plot(Rwd_all,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.4,0.9,0.4]);
xlabel('仿真次数');
ylabel('奖励值');
ylim([200,300])

% 提取模拟中的位置数据
Xs = Exp_learn.Observation.Quad.Data(1,:);% 获取X方向位移
Ys = Exp_learn.Observation.Quad.Data(2,:);% 获取Y方向位移
Zs = Exp_learn.Observation.Quad.Data(3,:);% 获取Z方向位移

dist = sqrt((Xs).^2 + (Ys).^2 + (Zs).^2);

figure
subplot(1,2,1)
plot3(Xs,Ys,Zs,'-b',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
grid on
xlabel('X')
ylabel('Y')
zlabel('Z')
title('无人机三维飞行轨迹');

subplot(1,2,2)
plot(dist)
xlabel('Time (s)')
ylabel('距离')
0Z_009m

```

相关文章
|
5天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
4天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
5天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
6天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
191 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
124 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
88 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
6月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章