【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力

简介: 【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。

介绍

image-20240630163139282

摘要

在本文中,我们提出了一种概念上简单但非常有效的卷积神经网络(ConvNets)注意力模块。与现有的通道注意力和空间注意力模块不同,我们的模块为特征图推断3D注意力权重,而无需向原始网络添加参数。具体来说,我们基于一些知名的神经科学理论,提出通过优化能量函数来找出每个神经元的重要性。我们进一步推导出一个快速的闭式解,并展示该解可以在不到十行代码中实现。该模块的另一个优点是大多数操作符是基于能量函数的解选择的,避免了大量结构调整的工作。对各种视觉任务的定量评估表明,所提出的模块灵活且有效,可以提高许多卷积神经网络的表示能力。我们的代码可在 Pytorch-SimAM 获取。

YOLOv11目标检测创新改进与实战案例专栏

点击查看文章目录: YOLOv11创新改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

点击查看专栏链接: YOLOv11目标检测创新改进与实战案例

在这里插入图片描述

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

SimAM(Simple Attention Module)是一种简单且无参数的注意力模块,用于卷积神经网络(Convolutional Neural Networks,ConvNets)。SimAM的设计灵感源自哺乳动物大脑中的神经科学理论,特别是基于已建立的空间抑制理论设计了一个能量函数来实现这一理论。SimAM通过推导出一个简单的解决方案来实现这个函数,进而将该函数作为特征图中每个神经元的注意力重要性。该注意力模块的实现受到这个能量函数的指导,避免了过多的启发式方法。SimAM通过推断特征图的3D注意力权重,优化能量函数以找到每个神经元的重要性,从而在各种视觉任务上提高性能。

  1. 基于空间抑制理论设计能量函数:SimAM利用空间抑制理论设计了一个能量函数,用于计算每个神经元的注意力重要性。
  2. 推导简单解决方案:为了实现这个能量函数,SimAM推导出了一个简单的解决方案,使得实现过程更加高效。
  3. 实现注意力权重:通过计算得到的注意力重要性,SimAM可以为每个神经元分配相应的注意力权重,从而提高特征图的表征能力。

核心代码

import torch
import torch.nn as nn

class SimAM(torch.nn.Module):
    def __init__(self, channels=None, e_lambda=1e-4):
        super(SimAM, self).__init__()

        # 初始化Sigmoid激活函数和e_lambda参数
        self.activation = nn.Sigmoid()  # Sigmoid激活函数用于映射输出到(0, 1)之间
        self.e_lambda = e_lambda  # 控制分母的平滑参数

    def __repr__(self):
        # 返回模型的字符串表示,包括e_lambda参数的值
        s = self.__class__.__name__ + '('
        s += ('lambda=%f)' % self.e_lambda)
        return s

    @staticmethod
    def get_module_name():
        # 静态方法,返回模型的名称
        return "simam"

YoloV11引入代码

在根目录下的ultralytics/nn/目录,新建一个attention目录,然后新建一个以 SimAM为文件名的py文件, 把代码拷贝进去。

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/143107915

相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
118 55
|
17天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
99 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
20天前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
51 3
图卷积网络入门:数学基础与架构设计
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
81 7
|
23天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
32 1
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】

热门文章

最新文章

下一篇
DataWorks