【YOLOv11改进 - 注意力机制】MLCA(Mixed local channel attention):混合局部通道注意力

简介: 【YOLOv11改进 - 注意力机制】MLCA(Mixed local channel attention):混合局部通道注意力本项目提出了一种轻量级的 Mixed Local Channel Attention (MLCA) 模块,结合通道信息和空间信息,提升网络表达效果。基于此模块,开发了 MobileNet-Attention-YOLO (MAY) 算法,在 Pascal VOC 和 SMID 数据集上表现优异,mAP 分别提高了 1.0% 和 1.5%。MLCA 通过局部池化、一维卷积和信息融合,有效捕获局部和全局信息。项目代码和详细配置可在 GitHub 和 CSDN 获取。

介绍

image-20240528213712012

摘要

本项目介绍了一种轻量级的 Mixed Local Channel Attention (MLCA) 模块,该模块同时考虑通道信息和空间信息,并结合局部信息和全局信息以提高网络的表达效果。基于该模块,我们提出了 MobileNet-Attention-YOLO(MAY) 算法,用于比较各种注意力模块的性能。在 Pascal VOC 和 SMID 数据集上,MLCA 相对于其他注意力技术更好地平衡了模型表示效果、性能和复杂度。与 PASCAL VOC 数据集上的 Squeeze-and-Excitation(SE) 注意力机制和 SIMD 数据集上的 Coordinate Attention(CA) 方法相比,mAP 分别提高了 1.0% 和 1.5%。

YOLOv11目标检测创新改进与实战案例专栏

点击查看文章目录: YOLOv11创新改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

点击查看专栏链接: YOLOv11目标检测创新改进与实战案例

在这里插入图片描述

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

Mixed Local Channel Attention (MLCA)是一种轻量级的本地注意力机制,旨在同时考虑通道信息、空间信息、局部信息和全局信息。MLCA模块的结构和工作原理如下:

结构

  • 输入处理:MLCA的输入特征向量经过两步池化处理,首先进行局部池化,将输入转换为1 C ks * ks的向量,以提取局部空间信息。
  • 分支处理:经过初始阶段处理后,使用两个分支将输入转换为一维向量,第一个分支包含全局信息,第二个分支包含局部空间信息。
  • 信息融合:经过一维卷积处理后,两个向量的原始分辨率通过反池化恢复,然后融合信息以实现混合注意力。

工作原理

  • 局部空间信息提取:通过局部池化和反池化,MLCA能够捕获输入特征向量中的局部空间信息,有助于提高对象检测的准确性。
  • 通道交互信息:一维卷积考虑每个通道与其k个相邻通道之间的关系,捕获通道间的局部交互信息,从而增强通道信息的表达能力。
  • 全局和局部信息融合:MLCA通过融合全局和局部信息,实现对对象检测任务的综合关注,同时避免通道维度减少导致的精度损失。

核心代码

import torch
import torch.nn as nn
import torch.nn.functional as F
import math

class MLCA(nn.Module):
    def __init__(self, in_size,local_size=5,gamma = 2, b = 1,local_weight=0.5):
        super(MLCA, self).__init__()

        # ECA 计算方法
        self.local_size=local_size
        self.gamma = gamma
        self.b = b
        t = int(abs(math.log(in_size, 2) + self.b) / self.gamma)   # eca  gamma=2
        k = t if t % 2 else t + 1

        self.conv = nn.Conv1d(1, 1, kernel_size=k, padding=(k - 1) // 2, bias=False)
        self.conv_local = nn.Conv1d(1, 1, kernel_size=k, padding=(k - 1) // 2, bias=False)

        self.local_weight=local_weight

        self.local_arv_pool = nn.AdaptiveAvgPool2d(local_size)
        self.global_arv_pool=nn.AdaptiveAvgPool2d(1)

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/143099740

相关文章
|
6月前
|
机器学习/深度学习
YOLOv8改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
YOLOv8改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
364 1
|
6月前
|
机器学习/深度学习
YOLOv5改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
YOLOv5改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
403 0
|
6月前
|
机器学习/深度学习 网络架构 计算机视觉
YOLOv5改进有效涨点系列->适合多种检测场景的BiFormer注意力机制(Bi-level Routing Attention)
YOLOv5改进有效涨点系列->适合多种检测场景的BiFormer注意力机制(Bi-level Routing Attention)
325 0
|
14天前
|
机器学习/深度学习 计算机视觉
【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征本文提出了一种全局注意力机制,通过保留通道和空间信息,增强跨维度的交互,减少信息损失。该机制结合3D置换与多层感知器用于通道注意力,卷积空间注意力子模块用于空间注意力。实验结果表明,在CIFAR-100和ImageNet-1K数据集上,该方法在ResNet和MobileNet上优于多种最新注意力机制。
【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
|
4月前
|
机器学习/深度学习 Serverless 计算机视觉
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
|
4月前
|
机器学习/深度学习 编解码 测试技术
【YOLOv10改进-注意力机制】LSKNet(Large Selective Kernel Network ):空间选择注意力
YOLOv10专栏聚焦遥感目标检测,提出LSKNet,首个探索大型选择性核的模型。LSKNet利用LSKblock Attention动态调整感受野,处理不同目标的上下文。创新点还包括极化滤波和增强技术,提升信息保留和非线性输出。在HRSC2016等遥感基准上取得SOTA性能。LSKNet代码展示其网络结构,包括多阶段模块和注意力机制。详细配置和任务说明见相关链接。
|
14天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力
【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力.EMA(Efficient Multi-Scale Attention)模块是一种高效多尺度注意力机制,旨在提高计算机视觉任务中的特征表示效果。该模块通过结合通道和空间信息、采用多尺度并行子网络结构以及优化坐标注意力机制,实现了更高效和有效的特征表示。EMA模块在图像分类和目标检测任务中表现出色,使用CIFAR-100、ImageNet-1k、MS COCO和VisDrone2019等数据集进行了广泛测试。
【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力
|
14天前
|
机器学习/深度学习 计算机视觉
【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力
【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力本文介绍了一种高效的视觉变换器——DilateFormer,通过多尺度扩张注意力(MSDA)模块,在保持高性能的同时显著降低计算成本。MSDA通过在滑动窗口内模拟局部和稀疏的块交互,实现了多尺度特征聚合。实验结果显示,DilateFormer在ImageNet-1K分类、COCO对象检测/实例分割和ADE20K语义分割任务上均取得了优异的性能,且计算成本比现有模型减少70%。
【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【YOLOv8改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
YOLO目标检测专栏探讨了模型创新,如注意力机制,聚焦通道和空间信息的全局注意力模组(GAM),提升DNN性能。GAM在ResNet和MobileNet上优于最新方法。论文及PyTorch代码可在给出的链接找到。核心代码展示了GAM的构建,包含线性层、卷积和Sigmoid激活,用于生成注意力图。更多配置详情参阅相关博客文章。
【YOLOv8改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】ECA(Efficient Channel Attention):高效通道注意 模块,降低参数量
YOLO目标检测专栏聚焦模型创新与实战,介绍了一种高效通道注意力模块(ECA),用于提升CNN性能。ECA仅用少量参数实现显著性能增益,避免了维度缩减,通过1D卷积进行局部跨通道交互。代码实现展示了一个ECA层的结构,该层在多种任务中展现优秀泛化能力,同时保持低模型复杂性。论文和代码链接分别指向arXiv与GitHub。更多详情可查阅CSDN博主shangyanaf的相关文章。