【YOLOv11改进 - 注意力机制】CoTAttention:上下文转换器注意力

简介: 【YOLOv11改进 - 注意力机制】CoTAttention:上下文转换器注意力Contextual Transformer (CoT) 是一种新型的Transformer风格模块,通过3×3卷积对输入键进行上下文编码,生成静态上下文表示,并通过两个1×1卷积学习动态多头注意力矩阵,增强视觉表示能力。CoTNet将CoT块应用于ResNet架构中,替代3×3卷积,提升图像识别、目标检测和实例分割等任务的性能。源码可在GitHub获取。

介绍

image-20240528110220667

摘要

Transformer自注意力机制已经引领了自然语言处理领域的革命,并且最近激发了Transformer风格架构设计在众多计算机视觉任务中取得竞争性结果。然而,大多数现有设计直接在二维特征图上使用自注意力机制,以基于每个空间位置的孤立查询和键对来获取注意力矩阵,但没有充分利用邻近键之间的丰富上下文信息。在这项工作中,我们设计了一种新颖的Transformer风格模块,即Contextual Transformer(CoT)块,用于视觉识别。该设计充分利用了输入键之间的上下文信息,以引导动态注意力矩阵的学习,从而增强视觉表示的能力。

在技术上,CoT块首先通过一个3×3卷积对输入键进行上下文编码,导致输入的静态上下文表示。我们进一步将编码后的键与输入查询连接起来,通过两个连续的1×1卷积来学习动态多头注意力矩阵。学习到的注意力矩阵与输入值相乘,以实现输入的动态上下文表示。静态和动态上下文表示的融合最终作为输出。我们提出的CoT块非常有吸引力,因为它可以轻松替换ResNet架构中的每一个3×3卷积,从而生成一种名为Contextual Transformer Networks(CoTNet)的Transformer风格骨干网络。通过在广泛应用(例如图像识别、目标检测和实例分割)中的大量实验,我们验证了CoTNet作为更强骨干网络的优越性。源码可在https://github.com/JDAI-CV/CoTNet获取。

YOLOv11目标检测创新改进与实战案例专栏

点击查看文章目录: YOLOv11创新改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

点击查看专栏链接: YOLOv11目标检测创新改进与实战案例

在这里插入图片描述

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

CoTNet是一种基于Contextual Transformer(CoT)模块的网络结构,其原理如下:

  1. CoTNet原理:
    • CoTNet采用Contextual Transformer(CoT)模块作为构建块,用于替代传统的卷积操作。
    • CoT模块利用3×3卷积来对输入键之间的上下文信息进行编码,生成静态上下文表示。
    • 将编码后的键与输入查询连接,通过两个连续的1×1卷积来学习动态多头注意力矩阵。
    • 学习到的注意力矩阵用于聚合所有输入数值,生成动态上下文表示。
    • 最终将静态和动态上下文表示融合作为输出。
  1. Contextual Transformer Attention在CoTNet中的作用和原理:

    Contextual Transformer Attention是Contextual Transformer(CoT)模块中的关键组成部分,用于引导动态学习注意力矩阵,从而增强视觉表示并提高计算机视觉任务的性能

    • Contextual Transformer Attention是CoT模块中的注意力机制,用于引导动态学习注意力矩阵。
    • 通过Contextual Transformer Attention,模型能够充分利用输入键之间的上下文信息,从而更好地捕捉动态关系。
    • 这种注意力机制有助于增强视觉表示,并提高计算机视觉任务的性能。
    • CoTNet通过整合Contextual Transformer Attention,实现了同时进行上下文挖掘和自注意力学习的优势,从而提升了深度网络的表征能力。

核心代码

import torch
from torch import flatten, nn
from torch.nn import functional as F

class CoTAttention(nn.Module):
    def __init__(self, dim=512, kernel_size=3):
        super().__init__()
        self.dim = dim  # 输入通道数
        self.kernel_size = kernel_size  # 卷积核大小

        # 关键信息嵌入层,使用分组卷积提取特征
        self.key_embed = nn.Sequential(
            nn.Conv2d(dim, dim, kernel_size=kernel_size, padding=kernel_size // 2, groups=4, bias=False),
            nn.BatchNorm2d(dim),  # 归一化层
            nn.ReLU()  # 激活函数
        )
        # 值信息嵌入层,使用1x1卷积进行特征转换
        self.value_embed = nn.Sequential(
            nn.Conv2d(dim, dim, 1, bias=False),
            nn.BatchNorm2d(dim)  # 归一化层
        )

        # 注意力机制嵌入层,先降维后升维,最终输出与卷积核大小和通道数相匹配的特征
        factor = 4  # 降维比例
        self.attention_embed = nn.Sequential(
            nn.Conv2d(2 * dim, 2 * dim // factor, 1, bias=False),
            nn.BatchNorm2d(2 * dim // factor),  # 归一化层
            nn.ReLU(),  # 激活函数
            nn.Conv2d(2 * dim // factor, kernel_size * kernel_size * dim, 1)  # 升维匹配卷积核形状
        )

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/143099154

相关文章
|
7月前
|
机器学习/深度学习
YOLOv8改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
YOLOv8改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
384 1
|
7月前
|
机器学习/深度学习
YOLOv5改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
YOLOv5改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
450 0
|
7月前
|
机器学习/深度学习 Ruby
YOLOv8改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
YOLOv8改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
731 0
|
7月前
|
机器学习/深度学习 Ruby
YOLOv5改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
YOLOv5改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
385 0
|
2月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
120 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
5月前
|
机器学习/深度学习 数据采集 自然语言处理
注意力机制中三种掩码技术详解和Pytorch实现
**注意力机制中的掩码在深度学习中至关重要,如Transformer模型所用。掩码类型包括:填充掩码(忽略填充数据)、序列掩码(控制信息流)和前瞻掩码(自回归模型防止窥视未来信息)。通过创建不同掩码,如上三角矩阵,模型能正确处理变长序列并保持序列依赖性。在注意力计算中,掩码修改得分,确保模型学习的有效性。这些技术在现代NLP和序列任务中是核心组件。**
245 12
|
5月前
|
机器学习/深度学习 图计算 计算机视觉
【YOLOv8改进 - 注意力机制】 CascadedGroupAttention:级联组注意力,增强视觉Transformer中多头自注意力机制的效率和有效性
YOLO目标检测专栏探讨了Transformer在视觉任务中的效能与计算成本问题,提出EfficientViT,一种兼顾速度和准确性的模型。EfficientViT通过创新的Cascaded Group Attention(CGA)模块减少冗余,提高多样性,节省计算资源。在保持高精度的同时,与MobileNetV3-Large相比,EfficientViT在速度上有显著提升。论文和代码已公开。CGA通过特征分割和级联头部增加注意力多样性和模型容量,降低了计算负担。核心代码展示了CGA模块的实现。
|
5月前
|
机器学习/深度学习 计算机视觉
【YOLOv10改进-注意力机制】 MSDA:多尺度空洞注意力 (论文笔记+引入代码)
YOLO目标检测专栏探讨了ViT的改进,提出DilateFormer,它结合多尺度扩张注意力(MSDA)来平衡计算效率和关注域大小。MSDA利用局部稀疏交互减少冗余,通过不同头部的扩张率捕获多尺度特征。DilateFormer在保持高性能的同时,计算成本降低70%,在ImageNet-1K、COCO和ADE20K任务上取得领先结果。YOLOv8引入了MultiDilatelocalAttention模块,用于实现膨胀注意力。更多详情及配置见相关链接。
|
7月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 2023注意力篇 | EMAttention注意力机制(附多个可添加位置)
YOLOv8改进 | 2023注意力篇 | EMAttention注意力机制(附多个可添加位置)
947 0
|
6月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 注意力机制 | 添加混合局部通道注意力——MLCA【原理讲解】
YOLOv8专栏介绍了混合局部通道注意力(MLCA)模块,它结合通道、空间和局部信息,提升目标检测性能,同时保持低复杂度。文章提供MLCA原理、代码实现及如何将其集成到YOLOv8中,助力读者实战深度学习目标检测。[YOLOv8改进——更新各种有效涨点方法](https://blog.csdn.net/m0_67647321/category_12548649.html)