SciPy 教程 之 SciPy 稀疏矩阵 3

简介: SciPy 稀疏矩阵教程介绍了稀疏矩阵的概念及其在科学计算中的应用。SciPy 的 `scipy.sparse` 模块提供了处理稀疏矩阵的功能,主要包括 CSC(压缩稀疏列)和 CSR(压缩稀疏行)两种格式。通过示例展示了如何使用 CSR 矩阵的方法,如查看非零元素和删除零元素。

SciPy 教程 之 SciPy 稀疏矩阵 3

SciPy 稀疏矩阵

稀疏矩阵(英语:sparse matrix)指的是在数值分析中绝大多数数值为零的矩阵。反之,如果大部分元素都非零,则这个矩阵是稠密的(Dense)。

在科学与工程领域中求解线性模型时经常出现大型的稀疏矩阵。

SciPy 的 scipy.sparse 模块提供了处理稀疏矩阵的函数。

我们主要使用以下两种类型的稀疏矩阵:

CSC - 压缩稀疏列(Compressed Sparse Column),按列压缩。
CSR - 压缩稀疏行(Compressed Sparse Row),按行压缩。

CSR 矩阵方法

我们可以使用 data 属性查看存储的数据(不含 0 元素):

实例

import numpy as np
from scipy.sparse import csr_matrix

arr = np.array([[0, 0, 0], [0, 0, 1], [1, 0, 2]])

print(csr_matrix(arr).data)

以上代码输出结果为:

[1 1 2]

使用 eliminate_zeros() 方法删除矩阵中 0 元素:

实例

import numpy as np
from scipy.sparse import csr_matrix

arr = np.array([[0, 0, 0], [0, 0, 1], [1, 0, 2]])

mat = csr_matrix(arr)
mat.eliminate_zeros()

print(mat)

以上代码输出结果为:

(1, 2) 1
(2, 0) 1
(2, 2) 2

目录
相关文章
|
2月前
|
存储 Python
SciPy 教程 之 SciPy 稀疏矩阵 4
SciPy 教程之 SciPy 稀疏矩阵 4:介绍稀疏矩阵的概念、类型及其在科学计算中的应用。SciPy 的 `scipy.sparse` 模块提供了处理稀疏矩阵的工具,重点讲解了 CSC 和 CSR 两种格式,并通过示例演示了如何创建和操作 CSR 矩阵。
47 3
|
2月前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 插值 2
SciPy插值教程:介绍插值概念及其在数值分析中的应用,特别是在处理数据缺失时的插补和平滑数据集。SciPy的`scipy.interpolate`模块提供了强大的插值功能,如一维插值和样条插值。通过`UnivariateSpline()`函数,可以轻松实现单变量插值,示例代码展示了如何对非线性点进行插值计算。
32 3
|
2月前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 插值 1
SciPy 插值教程介绍了插值的基本概念及其在数值分析中的应用。插值是在已知数据点间生成新点的方法,常用于填补数据缺失和数据平滑。SciPy 的 `scipy.interpolate` 模块提供了多种插值方法,其中 `interp1d()` 用于一维数据插值。通过示例展示了如何使用 `interp1d()` 进行插值计算。
43 1
|
2月前
|
存储 Python
SciPy 教程 之 SciPy 稀疏矩阵 2
SciPy教程之SciPy稀疏矩阵2:介绍稀疏矩阵的概念、应用场景及scipy.sparse模块的使用。重点讲解CSC和CSR两种稀疏矩阵类型及其常用方法,如data属性和count_nonzero()方法。
55 4
|
2月前
|
Python
SciPy 教程 之 SciPy 图结构 7
《SciPy 教程 之 SciPy 图结构 7》介绍了 SciPy 中处理图结构的方法。图是由节点和边组成的集合,用于表示对象及其之间的关系。scipy.sparse.csgraph 模块提供了多种图处理功能,如 `breadth_first_order()` 方法可按广度优先顺序遍历图。示例代码展示了如何使用该方法从给定的邻接矩阵中获取广度优先遍历的顺序。
35 2
|
2月前
|
算法 Python
SciPy 教程 之 SciPy 图结构 5
SciPy 图结构教程,介绍图的基本概念和SciPy中处理图结构的模块scipy.sparse.csgraph。重点讲解贝尔曼-福特算法,用于求解任意两点间最短路径,支持有向图和负权边。通过示例演示如何使用bellman_ford()方法计算最短路径。
33 3
|
2月前
|
索引 Python
SciPy 教程 之 SciPy 稀疏矩阵 1
本教程介绍了 SciPy 中的稀疏矩阵,包括 CSC 和 CSR 两种类型。稀疏矩阵主要用于科学计算和工程领域中的大型数据集,以节省内存和提高计算效率。通过 `scipy.sparse` 模块可以轻松创建和操作这些矩阵。示例展示了如何使用 `csr_matrix()` 函数创建 CSR 矩阵,并解释了输出结果的含义。
39 1
|
2月前
|
算法 Python
SciPy 教程 之 SciPy 图结构 6
SciPy 图结构教程,介绍图的基本概念及其在算法中的重要性。通过 `scipy.sparse.csgraph` 模块处理图结构,重点讲解 `depth_first_order()` 方法,用于返回从指定节点开始的深度优先遍历顺序。示例代码演示了如何使用该方法对邻接矩阵进行深度优先遍历。
32 1
|
2月前
|
算法 Python
SciPy 教程 之 SciPy 图结构 4
SciPy 图结构教程,介绍图的基本概念及在 SciPy 中的实现。图由节点和边组成,用于表示对象及其关系。scipy.sparse.csgraph 模块提供了图结构的处理方法,如使用 floyd_warshall() 计算所有节点间最短路径。示例代码展示了如何使用该方法计算并输出结果。
35 1
|
2月前
|
算法 Python
SciPy 教程 之 SciPy 优化器 2
SciPy 的 optimize 模块提供了多种最优化算法的实现,能够解决寻找函数最小值、方程的根等问题。与 NumPy 不同,SciPy 可以处理非线性方程。通过 `optimize.root` 函数,只需提供方程和初始猜测值即可求解。示例中展示了如何使用该函数求解方程 \(x + \cos(x) = 0\)。
25 2