媒体声音|重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台

本文涉及的产品
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 在2024云栖大会上,阿里云瑶池数据库发布了首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户高效提取和分析元数据,提升业务决策效率10倍。DMS已服务超10万企业客户,降低数据管理成本高达90%。

9月20日,2024云栖大会上,阿里云瑶池数据库宣布重磅升级,发布首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户敏捷、高效地提取并分析元数据,业务决策效率可提升10倍。

image.png

“数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力,以数据驱动决策和创新,为用户提供‘搭积木’一样易用、好用、高可用的使用体验。”阿里云副总裁、数据库产品事业部负责人李飞飞表示。

image.png

当前,近80%的企业在建设数据平台时采用多种数据引擎、多数据实例组合的策略,AI兴起也带来了非结构化数据的指数级增长,给企业对数据的高效检索和分析管理提出了更大挑战。

此次,阿里云重磅推出由“Data+AI”驱动的多模数据管理平台DMS:OneMeta+OneOps,助力构建企业智能Data Mesh(数据网格),提升跨环境、跨引擎、跨实例的统一元数据管理能力。

image.png

DMS创新设计了统一、开放、跨云的元数据服务OneMeta及DMS+X的多模联动模式OneOps。OneMeta首次打通不同数据系统,可支持全域40余种不同数据源,提供数据血缘和数据质量的一站式数据治理。

image.png

OneOps则基于数据开发平台DataOps和AI数据平台MLOps,将不同数据库引擎(关系型数据库、数据仓库、多模数据库等)集结到统一平台,让用户“开箱即用”,实现全链路的数据加工和计算能力。

自上线以来,DMS已服务超过10万企业客户。借助跨引擎、跨实例管理和开发以及数据智能一体化,DMS将帮助企业从分散式数据治理升级至开放统一数据智能管理,可降低高达90%的数据管理成本,业务决策效率提升10倍。

李飞飞表示:“这是自云原生数据库2.0后,阿里云瑶池数据库又一次里程碑式的改造升级。DMS:OneMeta+OneOps为企业提供了全域数据资产管理能力,让业务数据‘看得清、查得快、用得好’。”

据介绍,极氪汽车采用DMS+Lindorm一站式多模数据解决方案,实现32万在线车辆上万车机信号数据的弹性处理分析,开发效能提升2倍,降低50%云资源成本。在大模型领域,此方案支撑月之暗面构建AI智能助手Kimi,帮助Kimi准确理解用户的搜索意图、整合与概述多种信息源,实现精准和全面的信息召回,提升用户交互体验。

image.png

此外,云原生数据库PolarDB今年首次提出基于“三层解耦, 三层池化”(存储、内存、计算)、AlwaysOn架构的多主多写和秒级Serverless能力,解决了多主架构中冲突处理和数据融合、以及Serverless秒级弹性租户隔离的难题。

在高并发场景下,PolarDB性能为业界同类数据库3倍,并凭以上成果成功摘得中国首个ACM SIGMOD和IEEE ICDE工业赛道“最佳论文奖”。

image.png

本次云栖大会,阿里云瑶池还正式发布了云原生内存数据库Tair Serverless KV服务,是阿里云首个基于NVIDIA TensorRT-LLM的推理缓存加速云数据库产品。Tair采用NVIDIA TensorRT-LLM一起进行了深度优化。相比开源方案,该服务可实现PD分离/调度优化吞吐30%的提升 ,预计成本可降低 20%*注。

*注:基于Qwen2 7B模型在长上下文场景构造实验环境数据测试,最终效果以实际产品和场景测试数据为准。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
12天前
|
人工智能 Java Serverless
阿里云函数计算助力AI大模型快速部署
随着人工智能技术的快速发展,AI大模型已经成为企业数字化转型的重要工具。然而,对于许多业务人员、开发者以及企业来说,探索和利用AI大模型仍然面临诸多挑战。业务人员可能缺乏编程技能,难以快速上手AI模型;开发者可能受限于GPU资源,无法高效构建和部署AI应用;企业则希望简化技术门槛,以更低的成本和更高的效率利用AI大模型。
67 12
|
6天前
|
人工智能 数据库 自然语言处理
拥抱Data+AI|DMS+AnalyticDB助力钉钉AI助理,轻松玩转智能问数
「拥抱Data+AI」系列文章由阿里云瑶池数据库推出,基于真实客户案例,展示Data+AI行业解决方案。本文通过钉钉AI助理的实际应用,探讨如何利用阿里云Data+AI解决方案实现智能问数服务,使每个人都能拥有专属数据分析师,显著提升数据查询和分析效率。点击阅读详情。
拥抱Data+AI|DMS+AnalyticDB助力钉钉AI助理,轻松玩转智能问数
|
3天前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
1天前
|
人工智能 大数据 测试技术
自主和开放并举 探索下一代阿里云AI基础设施固件创新
12月13日,固件产业技术创新联盟产业峰会在杭州举行,阿里云主导的开源固件测试平台发布和PCIe Switch固件技术亮相,成为会议焦点。
|
23天前
|
存储 人工智能 自然语言处理
拥抱Data+AI|B站引入阿里云DMS+X,利用AI赋能运营效率10倍提升
本篇文章针对B站在运营场景中的痛点,深入探讨如何利用阿里云Data+AI解决方案实现智能问数服务,赋能平台用户和运营人员提升自助取数和分析能力,提高价值交付效率的同时为数据平台减负。
拥抱Data+AI|B站引入阿里云DMS+X,利用AI赋能运营效率10倍提升
|
1天前
|
JSON 分布式计算 数据处理
加速数据处理与AI开发的利器:阿里云MaxFrame实验评测
随着数据量的爆炸式增长,传统数据分析方法逐渐显现出局限性。Python作为数据科学领域的主流语言,因其简洁易用和丰富的库支持备受青睐。阿里云推出的MaxFrame是一个专为Python开发者设计的分布式计算框架,旨在充分利用MaxCompute的强大能力,提供高效、灵活且易于使用的工具,应对大规模数据处理需求。MaxFrame不仅继承了Pandas等流行数据处理库的友好接口,还通过集成先进的分布式计算技术,显著提升了数据处理的速度和效率。
|
16天前
|
人工智能 NoSQL MongoDB
阿里云与MongoDB庆祝合作五周年,展望AI赋能新未来
阿里云与MongoDB庆祝合作五周年,展望AI赋能新未来
|
11天前
|
人工智能 Cloud Native 调度
阿里云容器服务在AI智算场景的创新与实践
本文源自张凯在2024云栖大会的演讲,介绍了阿里云容器服务在AI智算领域的创新与实践。从2018年推出首个开源GPU容器共享调度方案至今,阿里云容器服务不断推进云原生AI的发展,包括增强GPU可观测性、实现多集群跨地域统一调度、优化大模型推理引擎部署、提供灵活的弹性伸缩策略等,旨在为客户提供高效、低成本的云原生AI解决方案。
|
10天前
|
机器学习/深度学习 人工智能 算法
转载:【AI系统】AI 发展驱动力
本文介绍了AI的起源与发展历程,强调了2016年AlphaGo胜利对AI关注度的提升。文中详细解析了AI技术在搜索引擎、图片检索、广告推荐等领域的应用,并阐述了机器学习、深度学习和神经网络之间的关系。文章还深入探讨了AI的学习方法,包括模型的输入输出确定、模型设计与开发、训练过程(前向传播、反向传播、梯度更新)及推理过程。最后,文章概述了AI算法的现状与发展趋势,以及AI系统出现的背景,包括大数据、算法进步和算力提升三大关键因素。
转载:【AI系统】AI 发展驱动力
|
24天前
|
人工智能 自动驾驶 大数据
预告 | 阿里云邀您参加2024中国生成式AI大会上海站,马上报名
大会以“智能跃进 创造无限”为主题,设置主会场峰会、分会场研讨会及展览区,聚焦大模型、AI Infra等热点议题。阿里云智算集群产品解决方案负责人丛培岩将出席并发表《高性能智算集群设计思考与实践》主题演讲。观众报名现已开放。

热门文章

最新文章

下一篇
DataWorks