大咖说|Data+AI:企业智能化转型的核心驱动力

简介: 在数字化浪潮的推动下,企业正面临前所未有的挑战与机遇。数据与人工智能的结合,形成了强大的Data+AI力量,尤其在近期人工智能迅速发展的背景下,这一力量正在加速重塑企业的运营模式、竞争策略和市场前景,成为适应变化、提升竞争力、推动创新的核心驱动力。本文将讨论企业采用Data+AI平台的必要性及其在企业智能化转型中的作用。

人工智能(AI)的崛起和挑战

人工智能(AI)诞生于20世纪50年代,自90年代以来随着数据量的爆发式增长以及算力的不断提升,AI被广泛应用于各行业,为社会带来巨大机遇。AI提升了企业的决策效率和精准度,驱动创新,优化运营,并助力组织变革和构建竞争优势。

麦肯锡调研显示,2022年全球有50%的公司部署了AI,投资超过总预算的4%。生成式AI(GenAI)的崛起进一步推动了企业转型,其在流程优化、个性化服务等方面的应用超越了传统AI。企业正积极探索如何提升Gen-AI的ROI,预计到2030年,中国约50%的工作将实现自动化,标志着Gen-AI在推动业务模式转型和价值创造中的关键作用。


AI虽然为企业带来了前所未有的机遇,但在实际落地过程中,企业面临着一系列挑战,这些挑战影响了AI技术在企业中的实际应用和价值实现。

1. 数据质量和治理问题:AI的应用依赖于高质量的数据,数据的“自由散漫”问题,即数据的不准确、分散性和新鲜度是制约AI落地的重要因素。

2. 数据资产与AI联动问题:企业积累了大量数据资产,这些资产价值的释放不仅依赖数据资产与AI的相互联动(数据赋能AI,AI赋能数据),还依赖数据资产团队和AI团队间的协同,企业缺乏高效的联动机制。

3. 技术门槛、成熟度和可靠性问题:尽管发展迅速,但AI落地仍然面临高门槛和应用成熟度的挑战,担心技术尚不成熟可能影响业务的稳定性和安全性,高门槛影响AI场景的高效落地。

4. 成本、人才与组织问题:AI落地通常需要较高的初期投入,包括基础设施投入、人才培养投入,如果涉及转型还会有业务流程和组织上的变革,企业需要评估AI投资回报率,实现降本增效。


Data+AI的价值

企业可通过采用Data+AI方案,有效应对实施AI过程中的挑战。

从托马斯·斯特尔那斯·艾略特提出的DIKW模型(Data—>Information—>Knowledge—>Wisdom)可知,数据是构建智能的基础。企业要实现AI的规模化和高质量应用,必须依赖强大的数据支持,即采用Data+AI方案。德勤的调查显示,28%的AI领先企业正利用Data+AI方案整合数据和AI,以实现高效、高价值的AI应用。

Data+AI是指将数据和人工智能结合起来,以支持从数据收集和准备到模型开发、部署、监控和治理的端到端工作流。

有了Data+AI,企业实施AI的挑战将得到有效解决:

▶︎ 数据治理和质量提升

Data+AI能够提供统一的数据治理框架,确保数据的准确性和可用性,从而提高数据质量。

▶︎ 数据和AI在一个平台高效联动

Data+AI能够让数据和AI团队在一个平台上进行协作,端到端的完成AI开发,数据管理为AI应用提供高效数据支撑,而AI又能反向增强数据管理的智能化水平(例如基于LLM构建Copilot等),进而形成Data和AI相互促进相互提升的良性循环。

▶︎ 有效降低技术门槛、提升AI成熟度和可靠性

Data+AI不仅提供经过验证的AI技术和服务,还以可视化、拖拉拽的操作方式降低技术门槛,同时企业借助于Data+AI生命周期的管理和运营能够不断提升AI成熟度和可靠性,帮助企业提升AI生产力水平。

▶︎ 减少基础设施、人才培养和组织变革投入Data+AI可采用云平台构建,并通过提供成本效益分析和自动化的AI应用开发,帮助企业降低成本并提高投资回报。通过简化AI的应用,降低了对专业AI人才的依赖,各团队使用同一个平台和单一数据来源来执行其工作,能够促进跨部门合作和知识共享,从而降低人才培养和组织变更投入。


Data+AI如何帮助企业


目前已有多个行业客户采取Data+AI来实现AI场景的持续高质量落地,下面是相较于传统AI场景落地,借助Data+AI在构建不同行业应用时的表现。

▶︎ 提高应用效果

Data+AI能够实现更高质量的数据供应,进而帮助AI产生更准确、更可靠的结果。例如,电商平台通过分析高质量的用户行为数据,可以更准确的预测用户购买习惯和偏好,从而提高转化率和客户满意度。

▶︎ 支持高效决策

Data+AI能够提供更实时、动态的数据,帮助AI快速适应市场动态,提升决策效率。例如在零售行业,通过实时、动态的数据获取,企业能够借助AI更及时的发现销售数据中的异常点和趋势,为决策提供支撑。

▶︎ 增强个性化服务

Data+AI能够从分散的数据中获取完善的信息,帮助AI提供更准确的个性化服务。例如在游戏行业,根据玩家在各个游戏中的历史反馈和行为模式,AI能够更精准的识别玩家意图,进而提供对应的游戏服务。

▶︎ 提升服务效率

Data+AI能够提供以业务域、个体等多种维度的数据和知识支撑,能够降低AI应用启动门槛,提升服务效率。例如在金融行业,根据平台内的技术元数据和操作元数据生成可被大模型识别的知识并在大模型服务的过程中持续自动维护,借助于知识能够有效降低冷启动投入并提供更准确的结果输出。

▶︎ 优化企业成本Data+AI能够实现多模的数据和数据—>AI的全链路管理,进而加速AI服务过程,降低过程中的人力、管理、资源成本,实现企业成本优化。例如在汽车行业,通过多模的数据管理结合全链路的Data+AI开发,能够在加速智能座舱领域各类AI场景的构建,降低研发投入。


企业走向Data+AI的关键

Data+AI能够帮助企业实现高质量、规模化AI应用,是企业智能化转型的核心驱动力。结合德勤关于企业人工智能应用现状报告和阿里云近期的最佳实践来看,企业走向Data+AI的核心在于通过统一的平台,实现数据和AI的深度整合,从而不断提高企业的数据决策和AI应用效率。该平台需要支持以下能力:

▶︎ 多模数据管理

AI应用通常会涉及到结构化及非结构化的数据使用,因此Data+AI平台需要具备多模数据管理能力,方便企业在Data+AI开发过程中高效利用各种类型的数据。

▶︎ 端到端的Data+AI开发

Data+AI开发包括数据处理、模型构建及大模型训练等环节。平台需提供全面的开发工具,并实现从数据到AI模型的全流程管理,以确保数据与AI的深度融合。同时不同团队能在统一平台上高效协作,有效降低管理成本,提升开发效率。

▶︎ 统一Data+AI治理

为确保AI应用的高效产出,平台必须兼顾数据的准确性、可用性和安全性,同时注重模型的质量和应用的实际效果。因此,平台需要涵盖Data+AI的元数据管理、数据质量、安全性等治理能力。该平台应通过统一的治理方案,实现数据和AI的全面管理,以提升AI应用的整体性能和可靠性。

▶︎ 多引擎适配在AI领域,由于数据处理和算法需求的多样性,单一引擎难以满足所有AI应用。因此,平台需要能够适配多种引擎,以便根据具体需求灵活选择引擎,这对保证AI解决方案的效果和效率至关重要。


阿里云DMS +X:一站式Data+AI平台

在今年9月云栖大会上,阿里云瑶池数据库重磅发布“DMS+X:统一、开放、多模的Data+AI数据管理服务”


该平台通过OneMeta和OneOps两大创新,简化了数据管理与AI开发。OneMeta统一了跨云的元数据服务,支持40多种数据源,实现多云和自建数据源的无缝集成。OneOps则整合了Notebook和Copilot,提供一体化的Data+AI开发环境,包括数据、机器学习模型及大型语言模型开发,可实现DMS+X一站式的Data+AI全生命周期管理。X代表任何数据引擎,如云原生数据库PolarDB、云数据库RDS、云原生数据仓库AnalyticDB、云原生多模数据库Lindorm等。在DMS+X之上,阿里云将助力企业数据以最快的速度拥抱AI,落地业务,产生价值。


未来展望

未来Data+AI平台将使数据与AI更紧密,推动企业AI建设实现飞跃。包括但不限于:

  • 智能决策:利用数据和AI进行市场预测和客户洞察,支持企业制定更及时、精准的商业策略。
  • 个性化体验:AI处理大数据,提供定制化服务,提升用户满意度。
  • 自动化与效率:自动化流程提高运营效率,AI优化资源配置,降低成本。
  • 创新驱动:数据驱动创新,开发新产品,拓展市场。
  • 安全性增强:AI监控安全数据,预防网络威胁,加强信息安全。
  • 决策自动化:AI模型自动执行决策,提高管理效率。
  • 跨领域整合:整合不同领域数据,促进跨领域合作与创新。

Data+AI不仅会改变企业原有运营方式,同时还为企业提供了增长的新途径。企业必须认识到Data+AI的重要性,并将其作为战略实施重点,促进智能化转型以保持竞争力和市场领导地位,在未来变化中,更好的抓住机遇,迎接新的机会。


了解更多

阿里云瑶池数据库为企业客户提供一站式 Data+AI 开发和管理服务,助您高效、安全地挖掘数据价值,以数据驱动决策与创新。

  1. 欢迎扫码加入「阿里云 Data+AI 用户交流群」,或钉钉搜索群号“79045023716”即可入群

image.png

  1. 🔗 欢迎免费体验阿里云DMS Copilot:https://yaochi.console.aliyun.com/DMSCopilot
  2. 🎁 点击表单链接获取Data+AI解决方案,我们将为您提供专家咨询服务。链接:https://survey.aliyun.com/apps/zhiliao/CM-3QOQlI

前50位咨询并且加入交流群的小伙伴还将获得 精美礼品 一份,先到先得!

image.png




相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
相关文章
|
人工智能 自然语言处理 Devops
云效 AI 智能代码评审体验指南
云效AI智能代码评审正式上线!在合并请求时自动分析代码,精准识别问题,提升交付效率与质量。支持自定义规则、多语言评审,助力研发效能升级。立即体验AI驱动的代码评审革新,让AI成为你的代码质量伙伴!
511 7
|
4月前
|
人工智能 自然语言处理 算法
【2025云栖大会】AI 搜索智能探索:揭秘如何让搜索“有大脑”
2025云栖大会上,阿里云高级技术专家徐光伟在云栖大会揭秘 Agentic Search 技术,涵盖低维向量模型、多模态检索、NL2SQL及DeepSearch/Research智能体系统。未来,“AI搜索已从‘信息匹配’迈向‘智能决策’,阿里云将持续通过技术创新与产品化能力,为企业构建下一代智能信息获取系统。”
562 9
|
4月前
|
机器学习/深度学习 人工智能 算法
用于实验室智能识别的目标检测数据集(2500张图片已划分、已标注) | AI训练适用于目标检测任务
本数据集包含2500张已标注实验室设备图片,涵盖空调、灭火器、显示器等10类常见设备,适用于YOLO等目标检测模型训练。数据多样、标注规范,支持智能巡检、设备管理与科研教学,助力AI赋能智慧实验室建设。
用于实验室智能识别的目标检测数据集(2500张图片已划分、已标注) | AI训练适用于目标检测任务
|
机器学习/深度学习 传感器 人工智能
十种路径:让企业AI策略见效
这十类案例的共同点在于它们可以根据对客户交互、生产和服务流程的实时监控进行分析并提供操作建议,并且具有相当的准确性和效率。企业在初次使用人工智能的时候要构建基础数据结构和框架,以支持最具价值潜力的高级分析、机器学习和人工智能技术。
|
4月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
1012 50
|
5月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
1165 52
|
4月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
588 30
|
4月前
|
设计模式 人工智能 自然语言处理
3个月圈粉百万,这个AI应用在海外火了
不知道大家还记不记得,我之前推荐过一个叫 Agnes 的 AI 应用,也是当时在 WAIC 了解到的。
570 1
|
4月前
|
存储 人工智能 NoSQL
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。