构建高可用性ClickHouse集群:从单节点到分布式

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
简介: 【10月更文挑战第26天】随着业务的不断增长,单一的数据存储解决方案可能无法满足日益增加的数据处理需求。在大数据时代,数据库的性能、可扩展性和稳定性成为企业关注的重点。ClickHouse 是一个用于联机分析处理(OLAP)的列式数据库管理系统(DBMS),以其卓越的查询性能和高吞吐量而闻名。本文将从我的个人角度出发,分享如何将单节点 ClickHouse 扩展为高可用性的分布式集群,以提升系统的稳定性和可靠性。

随着业务的不断增长,单一的数据存储解决方案可能无法满足日益增加的数据处理需求。在大数据时代,数据库的性能、可扩展性和稳定性成为企业关注的重点。ClickHouse 是一个用于联机分析处理(OLAP)的列式数据库管理系统(DBMS),以其卓越的查询性能和高吞吐量而闻名。本文将从我的个人角度出发,分享如何将单节点 ClickHouse 扩展为高可用性的分布式集群,以提升系统的稳定性和可靠性。
$$1111.png

单节点 ClickHouse

在项目初期,我使用的是单节点 ClickHouse 部署。这种部署方式简单直接,适合小规模的数据分析场景。但是随着数据量的增长,单节点系统开始显现出性能瓶颈,尤其是在进行复杂查询或大量数据插入时,响应时间显著增加。此外,单点故障也成为了系统稳定性的隐患。

设计高可用性集群架构

为了克服单节点 ClickHouse 的局限性,我决定将其扩展为分布式集群。在设计分布式 ClickHouse 集群时,需要考虑以下几个关键因素:

  • 数据分片:将数据分割成多个部分,并分布到不同的节点上,以实现负载均衡和提高查询效率。
  • 数据复制:为了保证数据的可靠性和系统的可用性,需要在不同节点上保存数据的副本。
  • 故障转移:当某个节点发生故障时,能够自动切换到其他健康节点,确保服务的连续性。
  • 水平扩展:随着业务的增长,能够轻松地添加更多的节点来扩展存储和计算能力。

实施步骤

步骤一:安装 ClickHouse 节点

首先,在每个计划加入集群的服务器上安装 ClickHouse。可以通过官方文档获取最新的安装指南。这里以 CentOS 为例:

sudo yum install -y https://repo.clickhouse.com/rpm/clickhouse-release-21.3-2.noarch.rpm
sudo yum install -y clickhouse-server clickhouse-client
AI 代码解读

启动 ClickHouse 服务并检查其状态:

sudo systemctl start clickhouse-server
sudo systemctl status clickhouse-server
AI 代码解读
步骤二:配置 ZooKeeper

ClickHouse 使用 ZooKeeper 来协调集群中的各个节点。因此,需要先搭建一个 ZooKeeper 集群。编辑 /etc/clickhouse-server/config.xml 文件,添加 ZooKeeper 配置:

<zookeeper>
    <node index="1">
        <host>zk1</host>
        <port>2181</port>
    </node>
    <node index="2">
        <host>zk2</host>
        <port>2181</port>
    </node>
    <node index="3">
        <host>zk3</host>
        <port>2181</port>
    </node>
</zookeeper>
AI 代码解读
步骤三:设置数据分片与复制

接下来,我们需要定义表结构以支持分片和复制。假设我们有一个名为 hits 的表,我们可以这样创建它:

CREATE TABLE hits
(
    EventDate Date,
    EventTime DateTime,
    UserID UInt64,
    URL String
) ENGINE = ReplicatedMergeTree('/clickhouse/tables/{shard}/hits', '{replica}')
PARTITION BY toYYYYMM(EventDate)
ORDER BY (EventDate, EventTime, UserID)
SETTINGS index_granularity = 8192;
AI 代码解读

在这个例子中,{shard}{replica} 是占位符,它们会被实际的 shard ID 和 replica ID 替换,从而实现数据的分片和复制。

步骤四:测试与监控

一旦集群配置完成,就需要进行全面的测试,确保所有功能都能正常工作。同时,设置适当的监控策略,以便及时发现和解决问题。可以使用 ClickHouse 自带的系统表和工具,如 system.metricssystem.events,以及外部监控工具如 Prometheus 和 Grafana。

故障恢复机制

ClickHouse 的高可用性不仅依赖于良好的架构设计,还需要有效的故障恢复机制。当检测到节点故障时,可以通过以下几种方式进行恢复:

  • 自动恢复:如果故障是短暂的网络中断或资源暂时不足,节点可能会自动重新加入集群。
  • 手动干预:对于更严重的故障,可能需要手动重启服务或恢复数据。
  • 数据同步:定期检查数据的一致性,并在必要时执行数据同步操作。

结论

通过上述步骤,可以从单节点 ClickHouse 成功扩展到一个高可用性的分布式集群。这不仅能有效应对数据量的增长,还能显著提升系统的稳定性和可靠性。在实际应用中,还需要根据具体的业务场景灵活调整配置,以达到最佳的性能表现。

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
打赏
0
0
0
0
341
分享
相关文章
阿里云ODPS多模态数据处理实战:MaxFrame的分布式AI数据管道构建
初次接触MaxCompute时,我被其强大的分布式计算能力所震撼,但真正让我深度依赖这套生态的转折点,是在一次处理百万级图像数据集的项目中。当时我们面临的挑战是如何在有限的时间内完成大规模图像特征提取和模型训练,传统的单机处理方案显然无法胜任。经过深入调研,我们选择了MaxCompute的Object Table功能来管理非结构化数据,配合MaxFrame进行分布式计算,整个处理流程的效率提升了300%以上。 在随后的几年实践中,我逐渐发现ODPS不仅仅是一个大数据处理平台,更是一个完整的数据生态系统。从DataWorks的可视化开发环境,到Hologres的实时查询能力,再到MaxCompu
51 3
阿里云ODPS多模态数据处理实战:MaxFrame的分布式AI数据管道构建
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
阿里云PolarDB云原生数据库在TPC-C基准测试中以20.55亿tpmC的成绩刷新世界纪录,展现卓越性能与性价比。其轻量版满足国产化需求,兼具高性能与低成本,适用于多种场景,推动数据库技术革新与发展。
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
282 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
Python 高级编程与实战:构建分布式系统
本文深入探讨了 Python 中的分布式系统,介绍了 ZeroMQ、Celery 和 Dask 等工具的使用方法,并通过实战项目帮助读者掌握这些技术。ZeroMQ 是高性能异步消息库,支持多种通信模式;Celery 是分布式任务队列,支持异步任务执行;Dask 是并行计算库,适用于大规模数据处理。文章结合具体代码示例,帮助读者理解如何使用这些工具构建分布式系统。
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论。
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
阿里云DTS踩坑经验分享系列|SLS同步至ClickHouse集群
作为强大的日志服务引擎,SLS 积累了用户海量的数据。为了实现数据的自由流通,DTS 开发了以 SLS 为源的数据同步插件。目前,该插件已经支持将数据从 SLS 同步到 ClickHouse。通过这条高效的同步链路,客户不仅能够利用 SLS 卓越的数据采集和处理能力,还能够充分发挥 ClickHouse 在数据分析和查询性能方面的优势,帮助企业显著提高数据查询速度,同时有效降低存储成本,从而在数据驱动决策和资源优化配置上取得更大成效。
289 9
构建高可用性GraphRAG系统:分布式部署与容错机制
【10月更文挑战第28天】作为一名数据科学家和系统架构师,我在构建和维护大规模分布式系统方面有着丰富的经验。最近,我负责了一个基于GraphRAG(Graph Retrieval-Augmented Generation)模型的项目,该模型用于构建一个高可用性的问答系统。在这个过程中,我深刻体会到分布式部署和容错机制的重要性。本文将详细介绍如何在生产环境中构建一个高可用性的GraphRAG系统,包括分布式部署方案、负载均衡、故障检测与恢复机制等方面的内容。
432 4
构建高可用性GraphRAG系统:分布式部署与容错机制
构建高可用性ClickHouse集群:从理论到实践
【10月更文挑战第27天】在数据驱动的时代,构建一个稳定、高效的数据库系统对于企业的业务发展至关重要。作为一名数据工程师,我深知数据库系统的高可用性和可扩展性对于支撑企业应用的重要性。在这篇文章中,我将分享如何构建一个高可用性的ClickHouse集群,从分布式表的设计到数据复制与分片,再到故障恢复机制,确保系统在大规模数据处理中的稳定性和可靠性。
243 0
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
406 0
分布式爬虫框架Scrapy-Redis实战指南

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问