物体检测框架YoloDotNet初体验

简介: 【11月更文挑战第3天】YoloDotNet 是一个基于 .Net 平台的物体检测框架,支持多种视觉任务,包括物体检测、分类、OBB 检测、分割和姿态估计。安装过程较为复杂,需要配置 CUDA 和 CUDNN 支持 GPU 加速。代码简洁易用,检测速度快且准确,适用于实时应用。该框架跨平台、开源免费,适合熟悉 .Net 的开发者使用。

以下是对物体检测框架 YoloDotNet 的初体验:


  1. 安装与环境配置12
  • 依赖项安装复杂:首先,安装过程相对较为繁琐。需要安装 CUDA 和 CUDNN 以支持 GPU 加速,如果对这两个工具不熟悉,可能在安装和配置环境变量时会遇到一些困难。例如,要确保 CUDNN 库目录正确地添加到系统的环境变量中,否则可能会导致程序无法找到相关的库文件。对于初学者来说,这一步骤可能需要花费一些时间去理解和正确操作。
  • .Net SDK 安装:安装.Net SDK 相对比较简单,直接从官方网站下载并安装即可。安装完成后,通过命令行工具 dotnet --version 可以验证是否安装成功,这为后续的项目创建提供了基础。
  • 框架依赖包添加:在创建项目后,添加 YoloDotNet 依赖包也比较方便,通过 dotnet add package yolodotnet 命令即可将其添加到项目中。但是,在添加依赖包之前,需要确保已经正确安装了所有的前置依赖项,否则可能会出现安装失败的情况。
  1. 代码编写与使用
  • 代码简洁性:在代码编写方面,YoloDotNet 提供了相对简洁的 API。初始化 Yolo 对象时,只需要指定 ONNX 模型的路径、模型类型等参数即可2。例如:


string modelPath = "e:/yolov8l.onnx";
using var yolo = new Yolo(new YoloOptions
{
    OnnxModel = modelPath,
    ModelType = ModelType.ObjectDetection,
    Cuda = false,
    GpuId = 0,
    PrimeGpu = false
});


  • 图像数据加载:加载图像数据也比较直观,可以使用相关的图像库(如 SixLabors.ImageSharp)来加载图片2。如下代码展示了如何加载一张图片:


using var image = SixLabors.ImageSharp.Image.Load<Rgba32>("e:/pic/1.jpeg");


  • 物体检测执行:执行物体检测的代码也比较简单,调用 runObjectDetection 方法并传入加载的图像和相关的检测参数(如置信度、交并比等),就可以得到检测结果2。例如:


var results = yolo.RunObjectDetection(image, confidence: 0.25, iou: 0.7);


  • 结果处理与保存:对检测结果的处理也比较方便,可以在图像上绘制检测结果,并将结果保存为新的图片。这样可以直观地看到物体检测的效果2。比如:


using var resultImage = image.Draw(results);
resultImage.Save("e:/pic/1_result.jpeg", SixLabors.ImageSharp.Formats.JpegFormat.Instance, 80);


  1. 检测效果
  • 检测准确性:经过大量的训练和优化,YoloDotNet 能够准确地识别出各种常见物体,具有较高的检测精度。例如,对于一些常见的物体,如人、车、动物等,都能够准确地检测出来3
  • 检测速度:YoloDotNet 具有较快的检测速度,能够在短时间内完成对图像或视频的物体检测任务,适用于实时应用场景。特别是在使用 GPU 加速的情况下,检测速度会有显著的提升3
  1. 功能与优势2
  • 功能丰富性:YoloDotNet 不仅支持传统的物体检测,还涵盖了分类、OBB 检测、分割和姿态估计等多种视觉任务,满足了不同应用场景的需求。这使得开发者可以根据具体的项目需求选择合适的功能。
  • 跨平台性:基于.Net 8,YoloDotNet 可以在多种操作系统上运行,包括 Windows、Linux 和 macOS 等,这为开发者提供了更大的灵活性,可以在不同的平台上部署应用程序。
  • 开源免费:作为一个开源项目,用户可以自由地使用、修改和分发 YoloDotNet,这对于开发者来说是一个很大的优势,可以根据自己的需求对框架进行定制和优化。


总体而言,YoloDotNet 是一个功能强大、易于使用的物体检测框架,对于熟悉.Net 平台的开发者来说,是一个很好的选择。但是,在使用过程中需要注意环境配置的复杂性,以及对硬件的要求(特别是对于 GPU 加速的需求)。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
8月前
|
机器学习/深度学习 数据采集 PyTorch
图像分类保姆级教程-深度学习入门教程(附全部代码)
图像分类保姆级教程-深度学习入门教程(附全部代码)
|
机器学习/深度学习 传感器 人工智能
【仪酷LabVIEW目标检测插件】手把手教你在LabVIEW中使用深度学习实现产品检测(上)
【仪酷LabVIEW目标检测插件】手把手教你在LabVIEW中使用深度学习实现产品检测(上)
509 1
|
机器学习/深度学习 并行计算 计算机视觉
YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)
YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)
7794 1
|
并行计算 Ubuntu 机器人
计算机视觉教程7-3:Openpose配置与实践
计算机视觉教程7-3:Openpose配置与实践
2453 0
计算机视觉教程7-3:Openpose配置与实践
|
5月前
|
机器学习/深度学习 自然语言处理 TensorFlow
迁移学习入门指南超棒!教你如何利用预训练模型加速 TensorFlow 项目开发,开启高效之旅!
【8月更文挑战第31天】在深度学习领域,迁移学习是种在资源有限的情况下快速开发高性能模型的技术。本指南介绍如何在TensorFlow中利用预训练模型实现迁移学习,包括选择、加载预训练模型、自定义顶层、冻结预训练层及训练模型等内容,以帮助提升模型性能和训练速度。
104 0
|
5月前
|
机器学习/深度学习 数据采集 TensorFlow
从零到精通:TensorFlow与卷积神经网络(CNN)助你成为图像识别高手的终极指南——深入浅出教你搭建首个猫狗分类器,附带实战代码与训练技巧揭秘
【8月更文挑战第31天】本文通过杂文形式介绍了如何利用 TensorFlow 和卷积神经网络(CNN)构建图像识别系统,详细演示了从数据准备、模型构建到训练与评估的全过程。通过具体示例代码,展示了使用 Keras API 训练猫狗分类器的步骤,旨在帮助读者掌握图像识别的核心技术。此外,还探讨了图像识别在物体检测、语义分割等领域的广泛应用前景。
58 0
|
XML 存储 PyTorch
基于Pytorch的从零开始的目标检测 | 附源码
基于Pytorch的从零开始的目标检测 | 附源码
|
8月前
|
机器学习/深度学习 算法 数据可视化
基于计算机视觉手势识别控制系统YoloGesture (利用YOLO实现) 有详细代码+部署+在线服务器尝试+开源可复现
基于计算机视觉手势识别控制系统YoloGesture (利用YOLO实现) 有详细代码+部署+在线服务器尝试+开源可复现
|
算法 物联网 人工智能
StableDiffusion流行模型介绍
本篇文章介绍市面上流行的Stable Diffusion模型,并且给出推荐的提示词和配置信息
11695 7
|
编解码 人工智能 PyTorch
手把手教物体检测——EfficientDet
手把手教物体检测——EfficientDet
941 0
手把手教物体检测——EfficientDet