【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测

简介: 【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。

介绍

摘要

许多当前的研究直接采用多速率深度扩张卷积,以同时从一个输入特征图中捕获多尺度上下文信息,从而提高实时语义分割的特征提取效率。然而,由于不合理的结构和超参数,这种设计可能导致难以获取多尺度上下文信息。为了降低获取多尺度上下文信息的难度,我们提出了一种高效的多尺度特征提取方法,将原来的单步方法分解为两个步骤:区域残差化-语义残差化。在这种方法中,多速率深度扩张卷积在特征提取中扮演了一个简单的角色:在第二步中基于第一步提供的每个简明区域形式的特征图,执行具有一个期望感受野的简单基于语义的形态滤波,以提高其效率。此外,还详细说明了每个网络阶段的扩张率和扩张卷积的容量,以充分利用所有可以实现的区域形式的特征图。相应地,我们分别为高层和低层网络设计了一个新颖的扩张残差(DWR)模块和一个简单反转残差(SIR)模块,并形成了一个强大的DWR分割(DWRSeg)网络。在Cityscapes和CamVid数据集上的大量实验表明,我们的方法通过在准确性和推理速度之间实现最先进的权衡,展示了其有效性,并且重量更轻。在没有预训练或使用任何训练技巧的情况下,我们在Cityscapes测试集上以每秒319.5帧的速度在一张NVIDIA GeForce GTX 1080 Ti显卡上达到了72.7%的mIoU,这超过了最新方法的69.5帧每秒的速度和0.8%的mIoU。代码和训练好的模型已公开可用。

YOLO11目标检测创新改进与实战案例专栏

点击查看文章目录: YOLO11创新改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

击查看专栏链接: YOLO11目标检测创新改进与实战案例

文章链接

论文地址:论文地址

代码地址: 代码地址

基本原理

DWRSeg(Dilation-wise Residual Segmentation)是一种用于实时语义分割任务的网络架构,旨在提高特征提取效率和多尺度信息获取能力。以下是关于DWRSeg及其技术原理的详细介绍:

  • DWRSeg采用了一种高效的多尺度特征提取方法,将原始的单步方法分解为两步:区域残差化(Region Residualization)和语义残差化(Semantic Residualization)。这种方法利用多率扩张卷积(depth-wise dilated convolutions)在两个步骤中提取特征,以实现更高效的多尺度信息获取。
  • DWRSeg设计了一种新颖的Dilation-wise Residual(DWR)模块和Simple Inverted Residual(SIR)模块,分别用于网络的高阶段和低阶段。这些模块具有精心设计的感受野大小,以充分利用各个网络阶段的区域形式特征图。
  • DWRSeg的整体架构是基于编码器-解码器结构,包括干扰块、SIR模块的低阶段和两个DWR模块的高阶段。编码器用于特征提取,解码器用于生成最终预测结果,无需辅助监督。
  • DWRSeg通过精心调整整个网络的超参数,实现了在准确性和效率之间的最佳平衡。最终,DWRSeg报告了两个版本:DWRSeg-Base(DWRSeg-B)和DWRSeg-Large(DWRSeg-L)。

image-20240707153722534

YOLO11引入代码

在根目录下的ultralytics/nn/目录,新建一个C3k2目录,然后新建一个以 C3k2_DWR为文件名的py文件, 把代码拷贝进去。


class DWR(nn.Module):
    def __init__(self, dim) -> None:
        super().__init__()

        self.conv_3x3 = Conv(dim, dim // 2, 3)

        self.conv_3x3_d1 = Conv(dim // 2, dim, 3, d=1)
        self.conv_3x3_d3 = Conv(dim // 2, dim // 2, 3, d=3)
        self.conv_3x3_d5 = Conv(dim // 2, dim // 2, 3, d=5)

        self.conv_1x1 = Conv(dim * 2, dim, k=1)

    def forward(self, x):
        conv_3x3 = self.conv_3x3(x)
        x1, x2, x3 = self.conv_3x3_d1(conv_3x3), self.conv_3x3_d3(conv_3x3), self.conv_3x3_d5(conv_3x3)
        x_out = torch.cat([x1, x2, x3], dim=1)
        x_out = self.conv_1x1(x_out) + x
        return x_out

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/143435663

相关文章
|
7天前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
36 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
7天前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
89 62
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
|
8天前
|
机器学习/深度学习 自然语言处理 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
43 13
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
|
8天前
|
机器学习/深度学习 编解码 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
37 12
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
|
8天前
|
计算机视觉 Perl
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
38 10
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
|
9天前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
39 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
11天前
|
机器学习/深度学习 编解码 异构计算
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
41 11
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
|
8天前
|
计算机视觉
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
32 5
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
|
9天前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络
YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络
25 6
YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络
|
11天前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
42 9
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息

热门文章

最新文章