【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测

简介: 【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。

介绍

摘要

许多当前的研究直接采用多速率深度扩张卷积,以同时从一个输入特征图中捕获多尺度上下文信息,从而提高实时语义分割的特征提取效率。然而,由于不合理的结构和超参数,这种设计可能导致难以获取多尺度上下文信息。为了降低获取多尺度上下文信息的难度,我们提出了一种高效的多尺度特征提取方法,将原来的单步方法分解为两个步骤:区域残差化-语义残差化。在这种方法中,多速率深度扩张卷积在特征提取中扮演了一个简单的角色:在第二步中基于第一步提供的每个简明区域形式的特征图,执行具有一个期望感受野的简单基于语义的形态滤波,以提高其效率。此外,还详细说明了每个网络阶段的扩张率和扩张卷积的容量,以充分利用所有可以实现的区域形式的特征图。相应地,我们分别为高层和低层网络设计了一个新颖的扩张残差(DWR)模块和一个简单反转残差(SIR)模块,并形成了一个强大的DWR分割(DWRSeg)网络。在Cityscapes和CamVid数据集上的大量实验表明,我们的方法通过在准确性和推理速度之间实现最先进的权衡,展示了其有效性,并且重量更轻。在没有预训练或使用任何训练技巧的情况下,我们在Cityscapes测试集上以每秒319.5帧的速度在一张NVIDIA GeForce GTX 1080 Ti显卡上达到了72.7%的mIoU,这超过了最新方法的69.5帧每秒的速度和0.8%的mIoU。代码和训练好的模型已公开可用。

YOLO11目标检测创新改进与实战案例专栏

点击查看文章目录: YOLO11创新改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

击查看专栏链接: YOLO11目标检测创新改进与实战案例

文章链接

论文地址:论文地址

代码地址: 代码地址

基本原理

DWRSeg(Dilation-wise Residual Segmentation)是一种用于实时语义分割任务的网络架构,旨在提高特征提取效率和多尺度信息获取能力。以下是关于DWRSeg及其技术原理的详细介绍:

  • DWRSeg采用了一种高效的多尺度特征提取方法,将原始的单步方法分解为两步:区域残差化(Region Residualization)和语义残差化(Semantic Residualization)。这种方法利用多率扩张卷积(depth-wise dilated convolutions)在两个步骤中提取特征,以实现更高效的多尺度信息获取。
  • DWRSeg设计了一种新颖的Dilation-wise Residual(DWR)模块和Simple Inverted Residual(SIR)模块,分别用于网络的高阶段和低阶段。这些模块具有精心设计的感受野大小,以充分利用各个网络阶段的区域形式特征图。
  • DWRSeg的整体架构是基于编码器-解码器结构,包括干扰块、SIR模块的低阶段和两个DWR模块的高阶段。编码器用于特征提取,解码器用于生成最终预测结果,无需辅助监督。
  • DWRSeg通过精心调整整个网络的超参数,实现了在准确性和效率之间的最佳平衡。最终,DWRSeg报告了两个版本:DWRSeg-Base(DWRSeg-B)和DWRSeg-Large(DWRSeg-L)。

image-20240707153722534

YOLO11引入代码

在根目录下的ultralytics/nn/目录,新建一个C3k2目录,然后新建一个以 C3k2_DWR为文件名的py文件, 把代码拷贝进去。


class DWR(nn.Module):
    def __init__(self, dim) -> None:
        super().__init__()

        self.conv_3x3 = Conv(dim, dim // 2, 3)

        self.conv_3x3_d1 = Conv(dim // 2, dim, 3, d=1)
        self.conv_3x3_d3 = Conv(dim // 2, dim // 2, 3, d=3)
        self.conv_3x3_d5 = Conv(dim // 2, dim // 2, 3, d=5)

        self.conv_1x1 = Conv(dim * 2, dim, k=1)

    def forward(self, x):
        conv_3x3 = self.conv_3x3(x)
        x1, x2, x3 = self.conv_3x3_d1(conv_3x3), self.conv_3x3_d3(conv_3x3), self.conv_3x3_d5(conv_3x3)
        x_out = torch.cat([x1, x2, x3], dim=1)
        x_out = self.conv_1x1(x_out) + x
        return x_out

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/143435663

相关文章
|
3天前
|
弹性计算 双11 开发者
阿里云ECS“99套餐”再升级!双11一站式满足全年算力需求
11月1日,阿里云弹性计算ECS双11活动全面开启,在延续火爆的云服务器“99套餐”外,CPU、GPU及容器等算力产品均迎来了全年最低价。同时,阿里云全新推出简捷版控制台ECS Lite及专属宝塔面板,大幅降低企业和开发者使用ECS云服务器门槛。
|
21天前
|
存储 弹性计算 人工智能
阿里云弹性计算_通用计算专场精华概览 | 2024云栖大会回顾
阿里云弹性计算产品线、存储产品线产品负责人Alex Chen(陈起鲲)及团队内多位专家,和中国电子技术标准化研究院云计算标准负责人陈行、北京望石智慧科技有限公司首席架构师王晓满两位嘉宾,一同带来了题为《通用计算新品发布与行业实践》的专场Session。本次专场内容包括阿里云弹性计算全新发布的产品家族、阿里云第 9 代 ECS 企业级实例、CIPU 2.0技术解读、E-HPC+超算融合、倚天云原生算力解析等内容,并发布了国内首个云超算国家标准。
阿里云弹性计算_通用计算专场精华概览 | 2024云栖大会回顾
|
3天前
|
人工智能 弹性计算 文字识别
基于阿里云文档智能和RAG快速构建企业"第二大脑"
在数字化转型的背景下,企业面临海量文档管理的挑战。传统的文档管理方式效率低下,难以满足业务需求。阿里云推出的文档智能(Document Mind)与检索增强生成(RAG)技术,通过自动化解析和智能检索,极大地提升了文档管理的效率和信息利用的价值。本文介绍了如何利用阿里云的解决方案,快速构建企业专属的“第二大脑”,助力企业在竞争中占据优势。
|
1天前
|
人工智能 自然语言处理 安全
创新不设限,灵码赋新能:通义灵码新功能深度评测
自从2023年通义灵码发布以来,这款基于阿里云通义大模型的AI编码助手迅速成为开发者心中的“明星产品”。它不仅为个人开发者提供强大支持,还帮助企业团队提升研发效率,推动软件开发行业的创新发展。本文将深入探讨通义灵码最新版本的三大新功能:@workspace、@terminal 和 #team docs,分享这些功能如何在实际工作中提高效率的具体案例。
|
7天前
|
负载均衡 算法 网络安全
阿里云WoSign SSL证书申请指南_沃通SSL技术文档
阿里云平台WoSign品牌SSL证书是由阿里云合作伙伴沃通CA提供,上线阿里云平台以来,成为阿里云平台热销的国产品牌证书产品,用户在阿里云平台https://www.aliyun.com/product/cas 可直接下单购买WoSign SSL证书,快捷部署到阿里云产品中。
1850 6
阿里云WoSign SSL证书申请指南_沃通SSL技术文档
|
10天前
|
Web App开发 算法 安全
什么是阿里云WoSign SSL证书?_沃通SSL技术文档
WoSign品牌SSL证书由阿里云平台SSL证书合作伙伴沃通CA提供,上线阿里云平台以来,成为阿里云平台热销的国产品牌证书产品。
1789 2
|
19天前
|
编解码 Java 程序员
写代码还有专业的编程显示器?
写代码已经十个年头了, 一直都是习惯直接用一台Mac电脑写代码 偶尔接一个显示器, 但是可能因为公司配的显示器不怎么样, 还要接转接头 搞得桌面杂乱无章,分辨率也低,感觉屏幕还是Mac自带的看着舒服
|
26天前
|
存储 人工智能 缓存
AI助理直击要害,从繁复中提炼精华——使用CDN加速访问OSS存储的图片
本案例介绍如何利用AI助理快速实现OSS存储的图片接入CDN,以加速图片访问。通过AI助理提炼关键操作步骤,避免在复杂文档中寻找解决方案。主要步骤包括开通CDN、添加加速域名、配置CNAME等。实测显示,接入CDN后图片加载时间显著缩短,验证了加速效果。此方法大幅提高了操作效率,降低了学习成本。
5387 15
|
13天前
|
人工智能 关系型数据库 Serverless
1024,致开发者们——希望和你一起用技术人独有的方式,庆祝你的主场
阿里云开发者社区推出“1024·云上见”程序员节专题活动,包括云上实操、开发者测评和征文三个分会场,提供14个实操活动、3个解决方案、3 个产品方案的测评及征文比赛,旨在帮助开发者提升技能、分享经验,共筑技术梦想。
1142 152
|
21天前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1585 14