C语言数据结构(2)

简介: 【10月更文挑战第21天】

【10月更文挑战第21天】
空间复杂度也是⼀个数学表达式,是对⼀个算法在运⾏过程中因为算法的需要额外临时开辟的空间。空间复杂度不是程序占⽤了多少bytes的空间,因为常规情况每个对象⼤⼩差异不会很⼤,所以空间复杂度算的是变量的个数。

空间复杂度计算规则基本跟实践复杂度类似,也使⽤⼤O渐进表⽰法。

注意:函数运⾏时所需要的栈空间(存储参数、局部变量、⼀些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运⾏时候显式申请的额外空间来确定

空间复杂度计算⽰例

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i - 1] > a[i])
            {
                Swap(&a[i - 1], &a[i]);
                exchange = 1;
            }
        } 
        if(exchange == 0)
            break;
    }
}
/*
外面的for循环内局部变量end,内部还有变量exchange
内循环的变量i,总共三个变量
所以这里的空间复杂度是O(1)


*/

三个变量,那么这个空间复杂度就是O(3)

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
    if (N == 0)
        return 1;
    return Fac(N - 1) * N;
}
/*
F(N)->F(N-1)->....->F(1)->F(0)
总共的空间复杂度就是O(N)
*/
//通过动态申请内容也会涉及到空间复杂度的计算的

int func(int n)
{
    int arr[n] = malloc(sizeof(int) * n);
}
//这里的空间复杂度也是O(N)

image.png

image.png

https://leetcode.cn/problems/rotate-array/description/

思路一:

首先将最后一位数进行保存,再将剩下的数字往右移一位,然后再将保存的数放到第一位

/*给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。



示例 1:

输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]
示例 2:

输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释: 
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]


提示:

1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
0 <= k <= 105


进阶:

尽可能想出更多的解决方案,至少有 三种 不同的方法可以解决这个问题。
你可以使用空间复杂度为 O(1) 的 原地 算法解决这个问题吗?*/
void rotate(int* nums, int numsSize, int k)
{
    while(k--)
    {
        int end=nums[numsSize-1];//创建一个临时变量将数组中最后一个数的值进行保存
        for(int i=numsSize-1;i>0;i--)//将数组中的数整体右移一位
        {
            nums[i]=nums[i-1];//在右移的时候我们要从后向前移,我们现将倒数第二个数赋值到最后一个数的位置上,然后随着i的变化进行右移操作
        }
        nums[0]=end;//最后我们将之前保存的值放到以一个位置上
    }


}

//但是这个存在限制,虽然这个代码没有问题,算法虽然没问题,但是超过时间限制,一但遇到大的数据,时间就变长了

但是这个题有时间的限制,一但给到了一个很大的数字,那么就要消耗很多的时间,就不满足题目要求了 将numsSize看作是N

这个代码的外层循环是k,内层循环是N-1,那么时间复杂度就是O(K*N),其实可以将K看做是N,都是变量,没啥区别,那么时间复杂度就是O(N^2),这个时间复杂度效率很低,所以在提交的时候我们会遇到超出时间限制的错误

既然这里的时间复杂度是O(N^2),空间复杂度是O(1)

那我们能不能先办法将时间复杂度降到O(N)呢?

思路二:空间换时间

申请一个新数组,数组大小为numsSize

假设K=3, 我们将原数组的后三个数字要放到新数组的前面,然后旧数组剩下的数字我们直接搬到新数组内

申请新数组等大的空间,先将后k个数据放到新数组中,再将剩下的数据挪到新数组中

最后我们还要将新数组的值挪到原数组中,为为原数组中的每个数进行重新赋值


void rotate(int* nums, int numsSize, int k)
{
    int newArr[numsSize];//创建一个数组大小和原先数组大小一样的数组
    for (int i = 0; i < numsSize; ++i)
    {
        newArr[(i + k) % numsSize] = nums[i];
    } 
    for (int i = 0; i < numsSize; ++i)
    {
        nums[i] = newArr[i];
    }
}
/*1 2 3 4 5 6 7
假设k是3,那么就是原数组后3数字放到新数组的前3个位置,原先的前4个数字放到新数组的后4个数字

newArr[(i + k) % numsSize] = nums[i];

第一次时,i=0 
newArr[(0 + 3) % 7] = nums[0];
newArr[(3) % 7] = nums[0];
newArr[3] = nums[0];
将原先数组的第一个赋值到新数组的第4个元素的位置

i=3时,就将原先数组的4放到新数组的最后一个位置

当i=4时,那么代码就是newArr[(4 + 3) % numsSize] = nums[4];
newArr[(7) %  7] = nums[4];
newArr[0] = nums[4];
将原先数组的下标为4的数字放到新数组的地址个位置


通过这个代码我们就实现了将原数组后k个数放到新数组的前k个位置,
将原数组的剩下的4个数据放到新数组的后4个位置


在后面的循环中,我们就将新数组中的值重新拿回到原数组内,因为我们打印的是原数组,在原数组中进行改变

*/

那么这个代码的时间复杂度是多少呢?

在第一个循环中,时间复杂度是O(N),在第二个循环中时间复杂度是O(N)

那么总的时间复杂度就是O(2N),根据规则,消掉系数,那么最后的时间复杂度就是O(N)

这种方法的时间复杂度就达到了O(N)

但是这种思路的空间复杂度也是O(N)

我们申请了新的空间,这个空间大小是N个,那么空间复杂度就是O(N)

这个思路虽然时间复杂度降到了O(N),但是我们是拿空间复杂度换的

思路三:

让时间复杂度为O(N),空间复杂度是O(1)

就是说明不需要额外申请空间



/*思路三
    1 2 3 4 5 6 7

n=7,当前数组内数据为7
旋转的k=3


第一步将前n-k个数据逆置  
这里的就是1 2 3 4
那么逆置后的结果就是4 3 2 1

第二步就是将后k个数据进行逆置
这里的就是5 6 7
逆置后的结果就是 7 6 5 

那么我们经历了一二步,得到了4 3 2 1 7 6 5

最后一步我们再将整体进行逆置
得到了5 6 7 1 2 3 4
*/
/*
我们在思路三已经想到了通过三步逆置达到效果
那我们就将逆置的函数写出来
我们在需要逆置的数组设置两个下标
最左边的下标是left
最右边的下标是right
那么我们每次将left和right的下标进行交换
交换完成之后我们将left和right进行++操作,逆置下一对数字
直到我们left和right重叠了我们就停止逆置操作

那么,理论成立,实践开始

*/


//逆置函数
void reverse(int *nums, int left,int right)//逆置的数组   逆置开始的起始位置
{
    while (left < right)//这里写等于就是多此一举的
    {
        //left和right指向的数据进行交换
        int tmp = nums[left];
        nums[left] = nums[right];
        nums[right] = tmp;

        left++;
        right--;
    }
}


void rotate(int* nums, int numsSize, int k)
{
    k = k % numsSize;//不让k超过numsSize

    //前n-k个数据逆置
    reverse(nums, 0, numsSize - k - 1);

    //后k个数据逆置
    reverse(nums, numsSize-k, numsSize-1);

    //整体逆置
    reverse(nums, 0, numsSize - 1);
}

/*
如果当前数组里面只有-1,但是我们要进行逆置2次,该怎么实现


我们需要对k进行处理,让k余上数组的大小,可以避免多余的逆置操作
一但逆置的次数大于数组的长度,这个步骤就起到了作用,减小了代码的运行时间

    k = k % numsSize;//不让k超过numsSize

*/

第一步将前n-k个数据逆置

第二步就是将后k个数据进行逆置

最后一步我们再将整体进行逆置

我们还要对逆置的次数进行取余,保证次数要小于数组的长度

我们对这个代码进行时间复杂度的分析

reverse函数 只有一个变量tmp,那么空间复杂度就是O(1)

对于逆置函数来说,我们调用了三次

第一次调用要交换的次数是(numsSize - k) / 2

第二次交换的次数是k / 2

第三次交换的次数是numsSize / 2

那么总的交换次数就是(numsSize - k) / 2 + k / 2 + numsSize / 2

所以时间复杂度就是O(N)

对于rotate函数来说,我们调用了三次reverse函数,因为reverse函数的时间复杂度是O(N),那么我们的rotate函数的时间复杂度就是O(N)

对于空间复杂度来说,rotaet本身仅仅只是调用了三次逆置函数,并没有额外开辟空间创建变量

所以空间复杂度是O(1)

如果对于逆置函数的时间复杂度还不理解的话你可以这么理解

时间复杂度的定义通常是最差的情况下

那么就是我们要进行整个数组的交换,这个就是最差的情况

假设数组有N个元素,那么我们就要交换N/2次,那么我们的时间复杂度就是O(N)

相关文章
|
2月前
|
机器学习/深度学习 算法 C语言
【趣学C语言和数据结构100例】11-15
本文介绍了五个C语言编程问题及其实现,包括矩阵对角线元素之和、有序数组插入、数组逆序、杨辉三角输出和魔方阵生成。每个问题不仅涉及基本的数组操作,还涵盖了算法设计的核心思想,如循环、条件判断和递归。通过解决这些问题,读者可以加深对C语言和数据结构的理解,提升编程技能。这些问题的解决过程展示了如何有效处理数组和矩阵,以及如何利用算法优化程序性能,为实际应用提供了宝贵的实践经验。
63 4
【趣学C语言和数据结构100例】11-15
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
49 1
|
2月前
|
存储 算法 搜索推荐
【趣学C语言和数据结构100例】91-95
本文涵盖多个经典算法问题的C语言实现,包括堆排序、归并排序、从长整型变量中提取偶数位数、工人信息排序及无向图是否为树的判断。通过这些问题,读者可以深入了解排序算法、数据处理方法和图论基础知识,提升编程能力和算法理解。
56 4
|
2月前
|
存储 机器学习/深度学习 搜索推荐
【趣学C语言和数据结构100例】86-90
本文介绍并用C语言实现了五种经典排序算法:直接插入排序、折半插入排序、冒泡排序、快速排序和简单选择排序。每种算法都有其特点和适用场景,如直接插入排序适合小规模或基本有序的数据,快速排序则适用于大规模数据集,具有较高的效率。通过学习这些算法,读者可以加深对数据结构和算法设计的理解,提升解决实际问题的能力。
48 4
|
2月前
|
存储 算法 数据处理
【趣学C语言和数据结构100例】81-85
本文介绍了五个经典算法问题及其C语言实现,涵盖图论与树结构的基础知识。包括使用BFS求解单源最短路径、统计有向图中入度或出度为0的点数、统计无向无权图各顶点的度、折半查找及二叉排序树的查找。这些算法不仅理论意义重大,且在实际应用中极为广泛,有助于提升编程能力和数据结构理解。
53 4
|
2月前
|
算法 数据可视化 数据建模
【趣学C语言和数据结构100例】76-80
本文介绍了五种图论算法的C语言实现,涵盖二叉树的层次遍历及广度优先搜索(BFS)和深度优先搜索(DFS)的邻接表与邻接矩阵实现。层次遍历使用队列按层访问二叉树节点;BFS利用队列从源节点逐层遍历图节点,适用于最短路径等问题;DFS通过递归或栈深入图的分支,适合拓扑排序等场景。这些算法是数据结构和算法学习的基础,对提升编程能力和解决实际问题至关重要。
54 4
|
2月前
|
存储 算法 vr&ar
【趣学C语言和数据结构100例】71-75
本文介绍了五个C语言数据结构问题及其实现,涵盖链表与二叉树操作,包括按奇偶分解链表、交换二叉树左右子树、查找节点的双亲节点、计算二叉树深度及求最大关键值。通过递归和遍历等方法,解决了理论与实际应用中的常见问题,有助于提升编程能力和数据结构理解。
45 4
|
2月前
|
存储 算法 C语言
【趣学C语言和数据结构100例】66-70
本书《趣学C语言和数据结构100例》精选了5个典型的数据结构问题及C语言实现,涵盖链表与数组操作,如有序集合的集合运算、有序序列表的合并、数组中两顺序表位置互换、三递增序列公共元素查找及奇偶数重排。通过详细解析与代码示例,帮助读者深入理解数据结构与算法设计的核心思想,提升编程技能。
37 4
|
2月前
|
存储 算法 C语言
【趣学C语言和数据结构100例】51-55
本文介绍了五个关于链表操作的C语言实现案例,包括删除单链表中的重复元素、从两个有序链表中查找公共元素、判断一个链表是否为另一链表的连续子序列、判断循环双链表是否对称及合并两个循环单链表。每个案例都详细解析了算法思路与实现方法,涵盖了链表操作的多种场景,旨在帮助读者深入理解链表数据结构的应用,提升算法设计与编程能力。
44 4
|
2月前
|
存储 算法 C语言
【趣学C语言和数据结构100例】16-20
本文精选了五个C语言编程问题,涵盖数组操作、字符串处理等基础领域。包括查找二维数组中的鞍点、折半查找法、统计文章中字符数量、电文解密及字符串连接。每个问题都附有详细的代码实现与分析,旨在帮助读者理解算法逻辑,提升编程技巧。通过这些实践,不仅能锻炼编程能力,还能加深对数据结构和算法的理解,为未来的学习和工作打下坚实基础。
69 4