从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略

本文涉及的产品
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。

机器学习项目从数据预处理到模型部署涉及多个关键步骤,每一步都对最终模型的性能和可靠性有着重要影响。本文将通过一个具体的案例,详细介绍从数据预处理到模型训练再到模型部署的全过程,帮助读者掌握机器学习项目中的最佳实践。

假设我们要构建一个预测房价的模型。我们将使用 Python 和一些常见的机器学习库,如 Pandas、Scikit-learn 和 Flask。以下是详细的步骤和示例代码。

数据预处理

首先,我们需要获取和清洗数据。假设我们已经有一个包含房价数据的 CSV 文件 house_prices.csv

import pandas as pd

# 加载数据
data = pd.read_csv('house_prices.csv')

# 查看数据基本信息
print(data.info())
print(data.describe())

# 处理缺失值
data.fillna(data.mean(), inplace=True)

# 转换类别变量
data = pd.get_dummies(data, columns=['neighborhood', 'style'])

# 分割特征和标签
X = data.drop('price', axis=1)
y = data['price']

特征选择和工程

特征选择和工程是提高模型性能的关键步骤。我们可以通过相关性分析和特征缩放来优化特征。

from sklearn.feature_selection import SelectKBest, f_regression
from sklearn.preprocessing import StandardScaler

# 特征选择
selector = SelectKBest(f_regression, k=10)
X_selected = selector.fit_transform(X, y)

# 特征缩放
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X_selected)

模型训练

选择合适的模型并进行训练是机器学习项目的核心。我们将使用线性回归模型作为示例。

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

# 训练模型
model = LinearRegression()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估模型
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')

模型调优

通过交叉验证和超参数调优,可以进一步提升模型的性能。

from sklearn.model_selection import GridSearchCV

# 定义参数网格
param_grid = {
   'fit_intercept': [True, False], 'normalize': [True, False]}

# 创建GridSearchCV对象
grid_search = GridSearchCV(LinearRegression(), param_grid, cv=5, scoring='neg_mean_squared_error')

# 执行网格搜索
grid_search.fit(X_train, y_train)

# 获取最佳模型
best_model = grid_search.best_estimator_

# 使用最佳模型预测
y_pred_best = best_model.predict(X_test)

# 评估最佳模型
mse_best = mean_squared_error(y_test, y_pred_best)
print(f'Best Mean Squared Error: {mse_best}')

模型部署

模型训练完成后,我们需要将其部署到生产环境中。这里我们将使用 Flask 构建一个简单的 Web 服务。

from flask import Flask, request, jsonify
import numpy as np

app = Flask(__name__)

# 加载模型
model = best_model

@app.route('/predict', methods=['POST'])
def predict():
    data = request.json
    features = np.array(data['features']).reshape(1, -1)
    prediction = model.predict(features)
    return jsonify({
   'prediction': prediction.tolist()})

if __name__ == '__main__':
    app.run(debug=True)

测试部署的模型

最后,我们可以通过发送 HTTP 请求来测试部署的模型。

import requests

# 示例数据
test_data = {
   
    "features": [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
}

# 发送请求
response = requests.post('http://localhost:5000/predict', json=test_data)

# 打印预测结果
print(response.json())

通过上述步骤,我们完成了一个从数据预处理到模型部署的完整机器学习项目。每一步都遵循了最佳实践,确保了模型的性能和可靠性。希望本文提供的示例和讲解能够帮助读者更好地理解和应用机器学习项目中的关键技术。

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
3天前
|
弹性计算 双11 开发者
阿里云ECS“99套餐”再升级!双11一站式满足全年算力需求
11月1日,阿里云弹性计算ECS双11活动全面开启,在延续火爆的云服务器“99套餐”外,CPU、GPU及容器等算力产品均迎来了全年最低价。同时,阿里云全新推出简捷版控制台ECS Lite及专属宝塔面板,大幅降低企业和开发者使用ECS云服务器门槛。
|
21天前
|
存储 弹性计算 人工智能
阿里云弹性计算_通用计算专场精华概览 | 2024云栖大会回顾
阿里云弹性计算产品线、存储产品线产品负责人Alex Chen(陈起鲲)及团队内多位专家,和中国电子技术标准化研究院云计算标准负责人陈行、北京望石智慧科技有限公司首席架构师王晓满两位嘉宾,一同带来了题为《通用计算新品发布与行业实践》的专场Session。本次专场内容包括阿里云弹性计算全新发布的产品家族、阿里云第 9 代 ECS 企业级实例、CIPU 2.0技术解读、E-HPC+超算融合、倚天云原生算力解析等内容,并发布了国内首个云超算国家标准。
阿里云弹性计算_通用计算专场精华概览 | 2024云栖大会回顾
|
3天前
|
人工智能 弹性计算 文字识别
基于阿里云文档智能和RAG快速构建企业"第二大脑"
在数字化转型的背景下,企业面临海量文档管理的挑战。传统的文档管理方式效率低下,难以满足业务需求。阿里云推出的文档智能(Document Mind)与检索增强生成(RAG)技术,通过自动化解析和智能检索,极大地提升了文档管理的效率和信息利用的价值。本文介绍了如何利用阿里云的解决方案,快速构建企业专属的“第二大脑”,助力企业在竞争中占据优势。
|
1天前
|
人工智能 自然语言处理 安全
创新不设限,灵码赋新能:通义灵码新功能深度评测
自从2023年通义灵码发布以来,这款基于阿里云通义大模型的AI编码助手迅速成为开发者心中的“明星产品”。它不仅为个人开发者提供强大支持,还帮助企业团队提升研发效率,推动软件开发行业的创新发展。本文将深入探讨通义灵码最新版本的三大新功能:@workspace、@terminal 和 #team docs,分享这些功能如何在实际工作中提高效率的具体案例。
|
7天前
|
负载均衡 算法 网络安全
阿里云WoSign SSL证书申请指南_沃通SSL技术文档
阿里云平台WoSign品牌SSL证书是由阿里云合作伙伴沃通CA提供,上线阿里云平台以来,成为阿里云平台热销的国产品牌证书产品,用户在阿里云平台https://www.aliyun.com/product/cas 可直接下单购买WoSign SSL证书,快捷部署到阿里云产品中。
1849 6
阿里云WoSign SSL证书申请指南_沃通SSL技术文档
|
10天前
|
Web App开发 算法 安全
什么是阿里云WoSign SSL证书?_沃通SSL技术文档
WoSign品牌SSL证书由阿里云平台SSL证书合作伙伴沃通CA提供,上线阿里云平台以来,成为阿里云平台热销的国产品牌证书产品。
1789 2
|
19天前
|
编解码 Java 程序员
写代码还有专业的编程显示器?
写代码已经十个年头了, 一直都是习惯直接用一台Mac电脑写代码 偶尔接一个显示器, 但是可能因为公司配的显示器不怎么样, 还要接转接头 搞得桌面杂乱无章,分辨率也低,感觉屏幕还是Mac自带的看着舒服
|
26天前
|
存储 人工智能 缓存
AI助理直击要害,从繁复中提炼精华——使用CDN加速访问OSS存储的图片
本案例介绍如何利用AI助理快速实现OSS存储的图片接入CDN,以加速图片访问。通过AI助理提炼关键操作步骤,避免在复杂文档中寻找解决方案。主要步骤包括开通CDN、添加加速域名、配置CNAME等。实测显示,接入CDN后图片加载时间显著缩短,验证了加速效果。此方法大幅提高了操作效率,降低了学习成本。
5386 15
|
13天前
|
人工智能 关系型数据库 Serverless
1024,致开发者们——希望和你一起用技术人独有的方式,庆祝你的主场
阿里云开发者社区推出“1024·云上见”程序员节专题活动,包括云上实操、开发者测评和征文三个分会场,提供14个实操活动、3个解决方案、3 个产品方案的测评及征文比赛,旨在帮助开发者提升技能、分享经验,共筑技术梦想。
1139 152
|
21天前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1585 14