基于遗传优化的SVD水印嵌入提取算法matlab仿真

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。

1.程序功能描述
基于遗传优化的的SVD水印嵌入提取算法。对比遗传优化前后SVD水印提取性能,并分析不同干扰情况下水印提取效果。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

SVD
823c0e4fd03d2606b185174485496430_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

GA优化SVD
6a418d1018ebb7d9ce1ffde6530f16ac_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

性能对比:

3.jpeg
4.jpeg
5.jpeg

3.核心程序

```% 遍历遗传算法返回的各代最优个体(从第二个开始,跳过第一个)
for i = 2:npop
% 使用当前个体对应的步长参数进行SVD嵌入水印
step_size = a(i);
Wimg = func_svd_embeded(I0, Iwat, step_size);

% 计算插入水印后图像的峰值信噪比(PEAKSNR)
[m, n] = size(I0);

error = I0 - Iatt;
MSE = (sum(sum(error .^ 2))) / (m * n);
if (MSE > 0)
   peaksnr = 10 * log10(255^2 / MSE);
else
   peaksnr = 99;
end

% 从攻击后图像中提取水印
wimg = func_svd_extract(Iatt, step_size);

% 存储原始水印图像,用于后续计算归一化相关系数
orig_Iwat = Iwat;

% 计算归一化相关系数(NC)作为目标函数值
norm_cor = corr2(orig_Iwat, wimg);

% 计算目标函数值(归一化相关系数)
obfunc = norm_cor;


% 更新最大目标函数值、最佳步长、PEAKSNR和NC,以及最终图像
if (obfunc > max)
    max = obfunc;
    step = step_size;
    peaksnr_value = peaksnr;
    NC = norm_cor;
    final_image = Iatt; % 存储最佳攻击后图像
end

end
[peaksnr_value,NC]
peaksnr2(ij,kk) = peaksnr_value;
norm_cor2(ij,kk) = NC;
end
end

figure;
subplot(121);
plot(NB,mean(peaksnr2,2),'b-o');
xlabel('噪声大小');
ylabel('图像PSNR');

subplot(122);
plot(NB,mean(norm_cor2,2),'b-o');
xlabel('噪声大小');
ylabel('提取水印NC');

save R2.mat NB peaksnr2 norm_cor2

```

4.本算法原理
遗传优化是一种基于自然选择和遗传机制的全局优化算法,其在图像水印嵌入与提取领域中有着广泛应用。特别是在SVD( Singular Value Decomposition,奇异值分解)水印算法中,遗传优化能有效地寻找到最佳的水印嵌入参数,以提高水印的鲁棒性和隐蔽性。

SVD水印嵌入:给定一幅待嵌入水印的宿主图像 I,通过奇异值分解将其分解为 I=UΣVT。在选定的奇异值子集上添加水印信息(通常以量化形式表示),然后重构图像得到嵌入水印后的图像 Iw​=U(Σ+W)VT,其中 W 为水印信息在奇异值上的映射。

遗传优化:以种群(一组候选解)为基础,通过模拟自然选择、交叉和变异等生物进化过程,逐步优化水印嵌入参数(如嵌入层选择、量化步长、水印强度等),以最大化水印的鲁棒性或隐蔽性。

ed801e7e9d48d3d289c19bd1db23c9b6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

遗传算法流程
初始化:设置遗传算法参数(种群大小、迭代次数、交叉概率、变异概率等),随机生成初始种群,每个个体代表一组水印嵌入参数。

适应度评估:计算种群中每个个体的鲁棒性得分FR​(θ) 和隐蔽性得分 FH​(θ),根据实际需求选择合适的评价指标(如加权和、折衷函数等)。

选择:根据适应度得分进行选择操作,保留优秀个体进入下一代种群,常用的策略有轮盘赌选择、tournament选择等。

交叉:对选定的个体进行交叉操作,生成新的子代个体。常见的交叉方法有单点交叉、两点交叉、均匀交叉等。

变异:以一定概率对子代个体的某些参数进行变异,打破遗传过程中的局部最优,增加种群多样性。常用变异操作包括二进制变异、实数域均匀变异、高斯变异等。

更新:将交叉和变异产生的子代个体加入下一代种群,替换掉被淘汰的个体。

迭代:若达到最大迭代次数或收敛条件满足,则停止;否则,返回步骤2继续下一轮迭代。

最优解选取:从最终种群中选择适应度最高的个体作为最佳水印嵌入参数。

相关文章
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
11天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
11天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
11天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
27 3
|
11天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
199 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
128 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码