很久以前在使用 Java 的 List.subList 方法时踩过一个坑,当时记了一条待办,要写一写这事,今天完成它。
我们先来看一段代码:
// 初始化 list 为 { 1, 2, 3, 4, 5 }
List<Integer> list = new ArrayList<>();
for (int i = 1; i <= 5; i++) {
list.add(i);
}
// 取前 3 个元素作为 subList,操作 subList
List<Integer> subList = list.subList(0, 3);
subList.add(6);
System.out.println(list.size());
输出是 5
还是 6
?
没踩过坑的我,会回答是 5
,理由是:往一个 List 里加元素,关其它 List 什么事?
而掉过坑的我,口中直呼 666。
好了不绕弯子,我们直接看下 List.subList 方法的注释文档:
/**
* Returns a view of the portion of this list between the specified
* <tt>fromIndex</tt>, inclusive, and <tt>toIndex</tt>, exclusive. (If
* <tt>fromIndex</tt> and <tt>toIndex</tt> are equal, the returned list is
* empty.) The returned list is backed by this list, so non-structural
* changes in the returned list are reflected in this list, and vice-versa.
* The returned list supports all of the optional list operations supported
* by this list.<p>
*
* This method eliminates the need for explicit range operations (of
* the sort that commonly exist for arrays). Any operation that expects
* a list can be used as a range operation by passing a subList view
* instead of a whole list. For example, the following idiom
* removes a range of elements from a list:
* <pre>{@code
* list.subList(from, to).clear();
* }</pre>
* Similar idioms may be constructed for <tt>indexOf</tt> and
* <tt>lastIndexOf</tt>, and all of the algorithms in the
* <tt>Collections</tt> class can be applied to a subList.<p>
*
* The semantics of the list returned by this method become undefined if
* the backing list (i.e., this list) is <i>structurally modified</i> in
* any way other than via the returned list. (Structural modifications are
* those that change the size of this list, or otherwise perturb it in such
* a fashion that iterations in progress may yield incorrect results.)
*
* @param fromIndex low endpoint (inclusive) of the subList
* @param toIndex high endpoint (exclusive) of the subList
* @return a view of the specified range within this list
* @throws IndexOutOfBoundsException for an illegal endpoint index value
* (<tt>fromIndex < 0 || toIndex > size ||
* fromIndex > toIndex</tt>)
*/
List<E> subList(int fromIndex, int toIndex);
这里面有几个要点:
subList 返回的是原 List 的一个 视图,而不是一个新的 List,所以对 subList 的操作会反映到原 List 上,反之亦然;
如果原 List 在 subList 操作期间发生了结构修改,那么 subList 的行为就是未定义的(实际表现为抛异常)。
第一点好理解,看到「视图」这个词相信大家就都能理解了。我们甚至可以结合 ArrayList 里的 SubList 子类源码进一步看下:
private class SubList extends AbstractList<E> implements RandomAccess {
private final AbstractList<E> parent;
// ...
SubList(AbstractList<E> parent,
int offset, int fromIndex, int toIndex) {
this.parent = parent;
// ...
this.modCount = ArrayList.this.modCount;
}
public E set(int index, E e) {
// ...
checkForComodification();
// ...
ArrayList.this.elementData[offset + index] = e;
// ...
}
public E get(int index) {
// ...
checkForComodification();
return ArrayList.this.elementData(offset + index);
}
public void add(int index, E e) {
// ...
checkForComodification();
parent.add(parentOffset + index, e);
this.modCount = parent.modCount;
// ...
}
public E remove(int index) {
// ...
checkForComodification();
E result = parent.remove(parentOffset + index);
this.modCount = parent.modCount;
// ...
}
private void checkForComodification() {
if (ArrayList.this.modCount != this.modCount)
throw new ConcurrentModificationException();
}
// ...
}
可以看到几乎所有的读写操作都是映射到 ArrayList.this、或者 parent(即原 List)上的,包括 size
、add
、remove
、set
、get
、removeRange
、addAll
等等。
第二点,我们在文首的示例代码里加上两句代码看现象:
list.add(0, 0);
System.out.println(subList);
System.out.println
会抛出异常 java.util.ConcurrentModificationException
。
我们还可以试下,在声明 subList 后,如果对原 List 进行元素增删操作,然后再读写 subList,基本都会抛出此异常。
因为 subList 里的所有读写操作里都调用了 checkForComodification()
,这个方法里检验了 subList 和 List 的 modCount
字段值是否相等,如果不相等则抛出异常。
modCount
字段定义在 AbstractList 中,记录所属 List 发生 结构修改 的次数。结构修改 包括修改 List 大小(如 add、remove 等)、或者会使正在进行的迭代器操作出错的修改(如 sort、replaceAll 等)。
好了小结一下,这其实不算是坑,只是 不应该仅凭印象和猜测,就开始使用一个方法,至少花一分钟认真读完它的官方注释文档。
如果读完文章有收获,可以关注我的微信公众号「闷骚的程序员」并🌟设为星标🌟,随时阅读更多内容。