H5微信外支付——移动端浏览器(一)

简介: 10月更文挑战第13天

​业务场景介绍:
H5移动端浏览器微信支付 >>>微信外支付(开发文档)
https://pay.weixin.qq.com/docs/merchant/products/h5-payment/introduction.html
图片.png
订单生成逻辑:前端根据商品信息配合后端调用接口,后端返回跳转URL, 前端判断浏览器类型,是微信外浏览器则直接跳转打开,再根据提示打开微信,拉微信支付

开发前准备:
开通商户接入微信支付,配置相关信息(详见开发文档)
https://pay.weixin.qq.com/static/product/product_index.shtml
提交订单,跳转拉起微信客户端支付
前端根据商品信息配合后端调用接口,后端返回跳转URL, 前端判断浏览器类型,然后跳转,这里注意也就是开发文档的–>开发指引里面的3.2.2. 【客户端】微信外部的浏览器拉起微信支付中间页
,这里根据实际情况进行处理,有个redirect_url参数,这个是拼接在服务端返回的url地址后面而且必须通过encodeURIComponent()编码才行,如果拼接这个参数就是最后会跳转到这个页面,如果不拼接则跳到支付发起页。
————————————————

目录
相关文章
|
15天前
|
移动开发
|
18天前
|
Web App开发 移动开发 Android开发
|
11天前
|
JSON 移动开发 JavaScript
在浏览器执行js脚本的两种方式
【10月更文挑战第20天】本文介绍了在浏览器中执行HTTP请求的两种方式:`fetch`和`XMLHttpRequest`。`fetch`支持GET和POST请求,返回Promise对象,可以方便地处理异步操作。`XMLHttpRequest`则通过回调函数处理请求结果,适用于需要兼容旧浏览器的场景。文中还提供了具体的代码示例。
在浏览器执行js脚本的两种方式
|
8天前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
|
1月前
|
机器学习/深度学习 自然语言处理 前端开发
前端大模型入门:Transformer.js 和 Xenova-引领浏览器端的机器学习变革
除了调用API接口使用Transformer技术,你是否想过在浏览器中运行大模型?Xenova团队推出的Transformer.js,基于JavaScript,让开发者能在浏览器中本地加载和执行预训练模型,无需依赖服务器。该库利用WebAssembly和WebGPU技术,大幅提升性能,尤其适合隐私保护、离线应用和低延迟交互场景。无论是NLP任务还是实时文本生成,Transformer.js都提供了强大支持,成为构建浏览器AI应用的核心工具。
396 1
|
28天前
|
JavaScript API
深入解析JS中的visibilitychange事件:监听浏览器标签间切换的利器
深入解析JS中的visibilitychange事件:监听浏览器标签间切换的利器
79 0
|
2月前
|
JavaScript 前端开发
js之浏览器对象|28
js之浏览器对象|28
|
3月前
|
机器学习/深度学习 人工智能 前端开发
【人工智能】利用TensorFlow.js在浏览器中实现一个基本的情感分析系统
使用TensorFlow.js在浏览器中进行情感分析是一个非常实用的应用场景。TensorFlow.js 是一个用于在JavaScript环境中训练和部署机器学习模型的库,使得开发者能够在客户端直接运行复杂的机器学习任务。对于情感分析,我们可以使用预先训练好的模型来识别文本中的积极、消极或中性情感。
101 4
【人工智能】利用TensorFlow.js在浏览器中实现一个基本的情感分析系统
|
3月前
|
机器学习/深度学习 存储 前端开发
实战揭秘:如何借助TensorFlow.js的强大力量,轻松将高效能的机器学习模型无缝集成到Web浏览器中,从而打造智能化的前端应用并优化用户体验
【8月更文挑战第31天】将机器学习模型集成到Web应用中,可让用户在浏览器内体验智能化功能。TensorFlow.js作为在客户端浏览器中运行的库,提供了强大支持。本文通过问答形式详细介绍如何使用TensorFlow.js将机器学习模型带入Web浏览器,并通过具体示例代码展示最佳实践。首先,需在HTML文件中引入TensorFlow.js库;接着,可通过加载预训练模型如MobileNet实现图像分类;然后,编写代码处理图像识别并显示结果;此外,还介绍了如何训练自定义模型及优化模型性能的方法,包括模型量化、剪枝和压缩等。
49 1
|
3月前
|
编解码 JavaScript 前端开发
JS逆向浏览器脱环境专题:事件学习和编写、DOM和BOM结构、指纹验证排查、代理自吐环境通杀环境检测、脱环境框架、脱环境插件解决
JS逆向浏览器脱环境专题:事件学习和编写、DOM和BOM结构、指纹验证排查、代理自吐环境通杀环境检测、脱环境框架、脱环境插件解决
104 1