梯度下降,原来如此?

简介: 这个故事比较适合对机器学习训练过程有些许了解的同学。当然啦,即使你还没有踏入机器学习的世界,也是可以来瞧一瞧的,因为“梯度下降”这个知识点相对独立。即使只是来“瞟一眼”,也能收获不少印象的

image

写在最前

这个故事比较适合对机器学习训练过程有些许了解的同学。当然啦,即使你还没有踏入机器学习的世界,也是可以来瞧一瞧的,因为“梯度下降”这个知识点相对独立。即使只是来“瞟一眼”,也能收获不少印象的

后续我还会带来一个关于机器学习训练过程的故事,这次就先当做是提前热热身吧!

在这个 AI 内容生成泛滥的时代,依然有一批人"傻傻"坚持原创,如果您能读到最后,还请点赞或收藏或关注支持下我呗,感谢 ( ̄︶ ̄)↗

解决什么问题?

蛋先生:嘿,丹尼尔,走路专心点,想啥呢?

丹尼尔:没啥,就是最近看了一点关于机器学习的东西,尤其是梯度下降,感觉有点懂又不完全懂。既然遇到你了,聊聊吧?

蛋先生:(咳咳,清了清嗓子)~

丹尼尔:我想听听你对梯度下降的理解

蛋先生:我可没说我懂哦

丹尼尔:哎呀,你肯定是“略懂”啊,这点我知道 (^▽^ )

蛋先生:你小子 (lll¬ω¬)。那我问你啊,梯度下降在机器学习里究竟是为了什么呢?

丹尼尔:不就是为了找到某个损失函数的最小值,从而确定模型的最佳参数嘛。损失函数的值越小,训练时模型预测的输出值与实际值的误差就越小

蛋先生:嗯,功课做得不错啊。你这不是已经懂了嘛

丹尼尔:No,我只是知其然而不知其所以然。为啥梯度下降就能找到最小值呢?

蛋先生:为了找到最小值,我们需要不断调整参数,使得模型输出值与实际值越来越接近。那么每次参数应该调整多少,往哪个方向调整?这,就是梯度下降要解决的问题了

梯度下降和导数

丹尼尔:要不,你还是先让我有点画面感吧

蛋先生:好啊,梯度下降这个名字本身就很形象了。想象你站在山顶,想要最快地到达山脚。你会选择朝最陡峭的方向下山,因为最陡峭的方向意味着在相同的距离内下降的高度最多,因此所需的时间最短

image

丹尼尔:嗯,有点画面了。咱们可以回到刚刚那个问题了,梯度下降到底是什么?为什么它能指明参数调整的大小和方向呢?

蛋先生:这就不得不提到导数了。梯度其实就是损失函数对各个参数的偏导数的集合(向量)

梯度 = [参数1的偏导数, 参数2的偏导数, ...]

丹尼尔:导数?偏导数?有点晕了~

蛋先生:简单来说,导数是针对只有一个自变量(参数)的函数而言的,而我们的情况涉及多个参数。在计算每个参数的导数时,我们固定其它参数的值,这个导数就称为偏导数(偏向于那个参数的导数)。但我们要调整的是一组参数,所以梯度就是这些偏导数的集合

丹尼尔:哦,也就是说,梯度的核心是导数。那么问题来了,导数为什么能指明参数调整的大小和方向呢?

导数的意义

蛋先生:先来简单了解一下导数。导数描述的是函数在某一点的瞬时变化率,反映了函数值随自变量(这里指参数)变化的快慢和方向

丹尼尔:某一点的瞬时变化率?怎么理解呢?

蛋先生:我们先来看一个函数 y = f(x)。某一点的瞬时变化率就是当 x 取特定值 x0 时,y 相对于 x 的变化快慢情况,也就是瞬时变化率,称为导数,可以用符号 f’(x0)df(x0)/dx 表示

丹尼尔:慢着,当 x 等于 x0 时,我只知道 y 的值为 y0,那如何求得 y 的瞬时变化率呢?

image

蛋先生:假设 x 从 x0 增加到 x + ∆x ,增量为 ∆x,而对应的 y 从 f(x0) 变成 f(x0 + ∆x),增量记为 ∆y,那么此时 y 相对于 x 的平均变化率就是 ∆y/∆x。如果我们让 ∆x 趋近于 0,就可以得到 x0 点附近 y 相对于 x 的瞬时变化率

image

image

丹尼尔:哦,那这个瞬时变化率有什么意义呢?

蛋先生:仔细观察上面的图,可以发现导数其实就是 x0 点处切线的斜率。而斜率反映了倾斜程度。所以导数的值越大,意味着在这一点上越陡峭,说明一点点 x 的变化会引起较大的 y 的变化,因此我们可以跨大一些的步子,更快地接近目标。相反,如果导数的值越小,步子也应该相应缩小一些,因为可能已经在目标附近了

image

走一步,往哪走?走多远?

丹尼尔:对于 x 的调整,我们既可以增大也可以减小,那如何判断应该增大还是减小呢?

蛋先生:我们的目的是让 y 的值尽量小,所以,如果导数为正,说明 x 变大时 y 也变大,我们就应该减小 x。如果导数为负,说明 x 变大时 y 变小,我们就应该增大 x

f’(x0) > 0 : x - ?
f’(x0) < 0 : x + ?

丹尼尔:那跨一步的距离应该是多少呢?

蛋先生:在机器学习中,如果梯度大,我们跨一步的距离就会相对大一些,这样可以更快地接近最小值;而如果梯度小,我们跨一步的距离就会相对小一些,因为可能已经在最小值附近徘徊了,跨步太大容易错过。对于一步实际的距离,我们可以使用 学习率 * 梯度 来控制,学习率 η 是一个超参数,需要我们自己来提供实际的值

f’(x0) > 0 : x - η * |f’(x0)|
f’(x0) < 0 : x + η * |f’(x0)|

丹尼尔:为什么要引入学习率呢?直接让一步的距离等于梯度的大小不行吗?

蛋先生:其实,确定每一步的合适距离是未知的,需要在实践中不断尝试和调整。因此,我们引入学习率这个参数,它就像一个“调节器”,允许我们通过调整其值来尝试不同的步长。这种调整可以手动进行,也可以通过一些自适应算法动态调节

丹尼尔:那么既然学习率是可以调整的,它会不会削弱梯度大小在决定步长时的作用呢?比如梯度大的乘个小的学习率,梯度小的乘个大的学习率

蛋先生:学习率虽然是可以调整的,但在同一轮迭代中,所有节点的学习率是相同的。因此,梯度的大小仍然能够反映出不同位置步长的相对差异

丹尼尔:我好像有点理解了,你们学会了吗?

蛋先生:你在跟谁说话?

丹尼尔:当然是阅读这篇文章的读者们啦!

蛋先生:好吧,那我们一起跟读者们 say goodbye 吧!

ヾ( ̄▽ ̄)Bye~Bye~

写在最后

亲们,都到这了,要不,点赞或收藏或关注支持下我呗 o( ̄▽ ̄)d

目录
相关文章
|
机器学习/深度学习 数据挖掘
【正交球面正则化】让模型不偏不倚更加鲁棒的简单粗暴神器,推荐阅读和使用!!!
【正交球面正则化】让模型不偏不倚更加鲁棒的简单粗暴神器,推荐阅读和使用!!!
165 0
|
机器学习/深度学习 算法
非凸函数上,随机梯度下降能否收敛?网友热议:能,但有条件,且比凸函数收敛更难
非凸函数上,随机梯度下降能否收敛?网友热议:能,但有条件,且比凸函数收敛更难
|
机器学习/深度学习
深度之眼(十八)——偏导数与矩阵的求导
深度之眼(十八)——偏导数与矩阵的求导
255 0
深度之眼(十八)——偏导数与矩阵的求导
|
机器学习/深度学习 算法
|
机器学习/深度学习 数据可视化 算法
万万想不到 10行代码搞定一个决策树
万万想不到 10行代码搞定一个决策树
万万想不到 10行代码搞定一个决策树
|
算法 数据挖掘 Python
一文速学-最小二乘法曲线拟合算法详解+项目代码
一文速学-最小二乘法曲线拟合算法详解+项目代码
903 0
一文速学-最小二乘法曲线拟合算法详解+项目代码
|
算法
动手撸个朴素贝叶斯算法bayes(离散数据)
动手撸个朴素贝叶斯算法bayes(离散数据)
184 0
动手撸个朴素贝叶斯算法bayes(离散数据)
|
算法 Python
通俗易懂讲解梯度下降法!
前言:本篇文章用讲解+实战的形式,浅显易懂讲解“梯度下降”,拥有高中数学知识即可看懂。
|
机器学习/深度学习 存储 算法
划重点!十分钟掌握牛顿法凸优化
之前,我发过一篇文章,通俗地解释了梯度下降算法的数学原理和推导过程,推荐一看。链接如下: 简单的梯度下降算法,你真的懂了吗?
473 0
划重点!十分钟掌握牛顿法凸优化
下一篇
无影云桌面